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ABSTRACT 
Trust has been recognized as a central variable to explain the resis-
tance to using automated systems (under-trust) and the overreliance 
on automated systems (over-trust). To achieve appropriate reliance, 
users’ trust should be calibrated to refect a system’s capabilities. 
Studies from various disciplines have examined diferent interven-
tions to attain such trust calibration. Based on a literature body of 
1000+ papers, we identifed 96 relevant publications which aimed to 
calibrate users’ trust in automated systems. To provide an in-depth 
overview of the state-of-the-art, we reviewed and summarized mea-
surements of the trust calibration, interventions, and results of 
these eforts. For the numerous promising calibration interven-
tions, we extract common design choices and structure these into 
four dimensions of trust calibration interventions to guide future 
studies. Our fndings indicate that the measurement of the trust 
calibration often limits the interpretation of the efects of diferent 
interventions. We suggest future directions for this problem. 
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• Human-centered computing → Human computer interac-
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1 INTRODUCTION 
Automation has become ubiquitous in our everyday lives. From 
basic automated processes which take over rudimentary, simple 
tasks, relying on repetitive or static rules to highly sophisticated 
systems which act intelligently based on available data, powered by 
deep learning algorithms, automation can guide credit scoring and 
risk assessments [42], transportation [52, 128], medical diagnostics 
[38], hiring decisions [78], and judicial sentencing [46] and recidi-
vism [21]. Moreover, automated systems help people decide what 
to wear [125], what to watch [1] or listen to [115], which news to 
read [37], and whom to date [134]. As diverse as the application 
contexts are functionalities that automated systems hold. They can 
be used to discover patterns that would otherwise go unnoticed, as-
sist and aid human judgments, and make sophisticated predictions 
and recommendations. The hopes and promises of such systems 
presage greater efciency and accuracy, taking over routine tasks 
by overcoming individuals’ fundamental physical and cognitive 
limitations. 

Besides the functional and technical diversity, automated systems 
appear under a myriad of terminologies. To encompass a wide range 
of diferent systems which can, but do not have to, be powered 
by artifcial intelligence, algorithms and/or machine learning, for 
this survey, we opted to examine trust calibrations for automated 
systems/automation with automation referring to any system that 
can operate autonomously. However, we also acknowledge that 
terminological ambiguity exists in previous work (e.g., [131]) and 
that choosing a particular terminology afects reader’s expectations 
and perceptions of systems [72]. 

Going beyond questions of functionalities, application, and ter-
minology, research from the feld of human-machine interaction 
is interested in how human users interact with and employ such 
automated systems. Two central observations have been made ex-
amining how users follow, interact, and rely on automated tech-
nologies: (1) users sometimes resist using automated systems, while 
(2) users sometimes also display an overreliance on automation. 
To understand and explain these observations, special importance 
has been given to the role of trust in automation. Originating in 
early works [74, 85, 106], trust has become a central variable to 
explain both resistance to use automated systems (disuse) as well 
as overreliance on automated systems (misuse). 

Hence, many studies aim to adjust trust bestowed in a system 
to refect the trustworthiness of systems, arriving at the concept 
of calibrated trust [74, 106]. For calibrated trust, the diferentiation 
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of the perceived trustworthiness of a system and the actual trust-
worthiness of a system is crucial, as systems can be more or less 
trustworthy due to their functionality and reliability, while users 
might perceive these systems diferently. In calibrated trust, the 
perceived trustworthiness of a system matches the actual trustwor-
thiness of a system. 

To achieve an appropriate calibration of trust, diferent ap-
proaches have been taken. Through empirical human-subject stud-
ies, researchers from multiple scientifc felds have implemented 
trust calibration strategies, adopting various methodologies. How-
ever, with calibrated trust constituting a central variable to the 
appropriate adoption of automated systems, a coherent overview 
of this feld is currently lacking. Thus, our aim with this study is 
to provide an overview of the current state of the feld by focusing 
on empirical human-subject studies for the appropriate calibra-
tion of trust in automated systems. In doing so, we frst provide a 
broader overview of the current understanding of calibrated trust 
in automated systems, discussing common challenges in achieving 
such a state. We then report the results of our survey of current 
empirical human-subject studies, which aimed to achieve a trust 
calibration. We summarize the system contexts and the task, the 
employed calibration interventions (experimental design), the mea-
surement strategies of the calibration and evaluation metrics, and 
the results of these eforts. After each section, we refect on the 
current state and point to future challenges. Based on the trust cali-
brations from all survey papers, we develop four trust calibration 
dimensions that refect the diferent calibration strategies and their 
key advantages and shortcomings: (1) exo versus endo trust cali-
brations, (2) warranted versus unwarranted trust calibrations, (3) 
static versus adaptive trus t calibrations, and (4) capabilities versus 
process-oriented trust calibrations. We close our paper by summa-
rizing our observations, identifying potential gaps, and providing 
recommendations for future work. 

2 FROM TRUST IN AUTOMATION TO 
CALIBRATED TRUST IN AUTOMATION 

For this work, we follow Lee and See’s [74] defnition of trust in 
automation, which is defned as “the attitude that an agent will 
help achieve an individual’s goals in a situation characterized by 
uncertainty and vulnerability” (p. 54) . In other words, trust is 
an attitude that is relevant in situations that include (1) levels of 
uncertainty, (2) a cooperative relationship between at least two 
entities, and (3) some exchange. 

Hence, central to the defnition of trust is the notion of 
risk/uncertainty (see the 2 above). Trust is not needed in situa-
tions where the outcome is certain or irrelevant because neither 
risk nor vulnerability are involved. Consequently, the notion of 
risk or uncertainty allows for the possibility of wrongfully trusting 
someone or something, which is usually accompanied by some sort 
of loss or pain, as well as wrongfully distrusting, which can be 
detrimental to performance. To avoid any such loss due to over-
or under-trust, trust needs to be calibrated [74] or warranted [53], 
which describes “how well trust matches the true capabilities of 
the automation” [74, p. 57] (see also [28]). In cases of over-trust, a 
person’s perception exceeds the system’s true capabilities, leading 
to the system’s misuse. For example, a person might rely too much 

on the capabilities of a navigation system, even in cases where it 
is clearly not appropriate. In the case of under-trust, a person’s 
perception of a system’s capabilities falls short of the true capabili-
ties, leading to the system’s disuse. For example, a person might 
wrongly disregard a warning from an autopilot. 

It has to be mentioned at this point that, while most studies do 
not explicitly diferentiate between trust and reliance, both concepts 
are, albeit often equated in everyday language, normatively distinct. 
Reliance is used for inanimate objects [9], for which, when reliance 
fails, we do not feel emotions of betrayal [121]. In contrast, to speak 
of trust requires the trustor to assign intent and anthropomorphism 
to the trustee which results in feelings of betrayal when trust is 
failed. Although all automated systems are inherently inanimate, 
users oftentimes anthropomorphize these systems [53, 97], hence, 
shifting from reliance to trust in the systems. 

Theoretical and empirical work shows that whether one accu-
rately calibrates one’s trust in a system depends on various factors. 
Lee and Moray [73] proposed, for example, that the three factors 
performance, process, and purpose of the system determine trust, 
where performance describes the general reliability of a system, 
process describes how well the inner workings of a system are 
understood, and purpose describes the intentions with which the 
system was built. While all three factors, performance, process, 
and purpose, relate to the system itself, in a recent meta-analysis, 
Kaplan et al. [60] extended these system-related antecedents of 
trust in artifcial intelligence by adding human-related antecedents 
of trust (e.g., individual’s disposition to trust and ability, attitudes), 
and context-related antecedents of trust (e.g., risk of the situation). 

Consequently, related to all three antecedents of trust, many 
possible sources of trust miscalibration exist. Individuals might be, 
by disposition, less/more inclined to trust a system, independent of 
its capabilities. Similarly, following insights on algorithm aversion 
[30] and algorithm appreciation [80], individuals’ attitudes towards 
automation likely infuence trust levels. From a system perspective, 
adding explanations or increasing system transparency might al-
low individuals to better gauge the true capabilities of a system. 
However, some results suggest that the increased transparency can 
also be detrimental to trust calibrations. Poursabzi-Sangdeh et al. 
[108] found that providing users with more information (through 
increased interpretability and transparency) decreased the user’s ca-
pabilities to detect and correct mistakes by the system. The authors 
propose that this might be the result of information overload. 

In sum, trust in automation is necessary for situations of un-
certainty and dependence. Miscalibrating one’s trust can lead to 
wrongfully accepting an automated system in cases of over-trust 
and wrongfully rejecting an automated system in cases of under-
trust. Such miscalibration can be caused by various factors related 
to the human user, the system, and/or the context. 

3 METHODOLOGY 
To achieve a calibrated level of trust, diferent approaches have been 
taken, varying in their operationalizations of calibration, contexts, 
systems used, experimental set-ups, subjects, and results. In this 
section, we defne the scope of our survey and describe the paper 
selection criteria and search strategies. While we did not intend 
to conduct a systematic review but a scoping review, to ensure, 
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nevertheless, a high quality standard for the search and selection 
process as well as the report of our results, we follow the Statement 
on Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA 2020 Statement) [105]. A systematic overview of 
the steps we pursued to ensure quality can be found in the online 
supplementary material under the PRISMA 2020 checklist. 

3.1 Scope and inclusion criteria 
For this survey, we focused on studies that adhered to the following 
inclusion criteria: 

(1) The paper must be peer-reviewed and published either 
within an academic journal or a conference proceeding. 
Preprints and theses were excluded. 

(2) The paper must be empirical and include human subjects. We 
excluded studies that were solely based on simulation data or 
which solely focused on a system’s perspective. Qualitative 
investigations were also excluded. This includes investiga-
tions which were empirical in nature, but data collected were 
qualitative. Papers which introduced a theory, a framework 
or guidelines without empirical data were also excluded. 

(3) The paper must include a true trust calibration intervention. 
Thus, studies that merely intended to increase/decrease trust 
were excluded if they did not also include a matching oper-
ationalization of trust with the system’s capabilities. This 
meant that it was necessary that three sub-criteria were 
fulflled: frst, trust was somehow assessed, i.e., through self-
reports but also psychophysiological and behavioral mea-
sures, and, second, the system’s ability had to be at least 
defned but ideally manipulated (by including, for example, 
diferent levels of reliability or stating a system’s reliabil-
ity). Only through this step the estimated level of system 
trustworthiness can be assessed which is needed in the third 
and fnal step. In a third step, to be included, studies had to 
match these two information with each other by assuming, 
for example, that high reliable systems were perceived more 
trustworthy than low reliability systems. This also meant 
that if a study, for example, only compared users’ trust in 
a system after receiving an explanation versus after receiv-
ing no explanation, we excluded the study as there was no 
matching of the system’s actual abilities with the perceived 
trustworthiness. Without information on the system’s abil-
ity, the appropriateness of the potential trust increase due 
to an explanation cannot be judged. 

We included the following keywords in our search to cover the 
central constructs: 

• Trust: trust calibration OR reliability calibration OR trust 
adjustment OR reliability adjustment OR warranted trust 
OR unwarranted trust OR appropriate trust OR appropriate 
reliability OR trust repair OR overtrust OR undertrust. 

• As automated systems can come under a myriad of sys-
tems or names, we extended this keyword search by: AND 
automat* OR autonomous OR algorithm* OR artifcial in-
telligence OR machine learning OR robot* OR machine OR 
system OR agent OR computer. 

3.2 Search Strategies and Selection Process 
To select suitable papers, we proceeded in two search waves. Dur-
ing a frst search, conducted on August 1, 2022 we searched for 
suitable papers using diferent platforms. We began our search 
on Google Scholar and extended the search to premier proceed-
ings of human-computer interaction conferences such as the ACM 
CHI Conference on Human Factors in Computing Systems, ACM 
Conference on Computer-supported Cooperative Work and Social 
Computing, and ACM Conference on Fairness, Accountability, and 
Transparency. In a second wave, conducted on November 22, 2022, 
we extended our frst search by including the full ACM library and 
the Scopus database. We fnalized our search by examining and 
cross-referencing relevant citations from the papers we found in 
the frst two steps. Hence, the time frame of our search ranged 
between the date of database inception and November 22, 2022. We 
only included English language publications. 

This two-wave search resulted in over 1000 papers. A single 
coder removed duplicates and work that was not peer-reviewed 
(preprints & theses). Because the third inclusion criterion was more 
complex and required scanning the papers’ abstracts and, if needed, 
the full texts, three coders reviewed 12% of the remaining papers 
to decide whether these were out-of-scope. The coders worked 
independently and reached a satisfactory inter-rater agreement 
of Krippendorf’s alpha = .83 after a frst round of coding. Dis-
agreements were resolved via consensus discussions. Based on 
the discussion of the 12% of the paper corpus between the three 
independent reviewers, a single coder selected papers from the 
remaining body to be in- or excluded in the survey. 

All articles selected for fnal inclusion were copied into a spread-
sheet and coded by a single coder in reference to our primary 
categories of interest: the system, the task, the employed calibra-
tion intervention, the calibration measurement, trust measures, and 
calibration results. In addition to these categories, we also collected 
data to describe the datasets, such as study participants, number of 
participants, and set-up (online, lab, or feld). In the second coding 
round, codes were grouped into related categories such as task 
domains, variables of interest, or calibration strategies. The spread-
sheets containing (a) all papers found (including the coding of the 
three selection criteria), and (b) a list of all fnal papers is publicly 
accessible in the online supplementary material. 

From the over 1000 papers found, 96 papers were included in 
this survey. For an overview of the selection process, see Figure 1. 
Studies were published during the years 1992 and 2023. 

4 RESULTS 
The central aim of our study is to provide an overview of the current 
state of the feld by focusing on empirical human-subject studies 
for the appropriate calibration of trust in automated systems. To 
achieve this, in the next section, we summarize common strategies, 
advantages, and challenges. We start our survey by reviewing the 
studies’ samples, and the tasks participants were asked to do. We 
further divided the task section into four subchapters—the role 
of automation, the degree of automation, the required expertise 
needed for the task, and the risk of the task—to refect how the 
selected tasks infuenced the results. This is followed by a section 
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Figure 1: Flow chart of the paper selection process. 

on the trust calibration interventions, and a fnal section which 
provides and overview of the results of these studies. 

4.1 The Samples 
Of the 96 articles included in the fnal selection, 40 were online 
studies, and 61 were conducted in a lab environment (some papers 
included multiple studies, hence the total number of studies exceeds 
the paper count of 96). The sample size of the online studies ranged 
from 9 to 1224 participants (M = 232, SD = 224). In contrast, the 
sample sizes of lab studies ranged from 8 to 865 1 participants (M = 
72, SD = 125). For the online studies, participants were all but one 
recruited via crowdsourcing panels such as Amazon Mechanical 
Turk or Prolifc. One study used the researchers’ social network. 
29 of the lab studies explicitly recruited students, eight recruited 
experts, and three recruited staf members. The remaining study 
protocols did not disclose the recruitment process (some studies 
recruited a mix of participants, e.g., experts and non-experts). 

In sum, the distribution of lab and online studies seems leveled, 
although skewed towards lab studies. Due to the increased efort 
of conducting feld studies, not surprisingly, we did not fnd any in 
this set of studies. Hence, for future studies, we see great potential 
to test trust calibration interventions in the feld. 

4.2 The Tasks 
We grouped all studies into diferent application domains to get an 
overview of the calibration tasks. We identifed the following seven 
categories: security and safety, transportation, military, production, 
1See[19] 

gaming, medicine, and others. Table 1 summarizes all seven do-
mains, including the respective tasks. In the next section, we refect 
on how these domain choices impact the results of the respective 
studies in terms of the role/function of automation, the required 
expertise needed for the task, and the risk of the task. 

The role of automation. Overall, we identifed two major roles 
of automated systems: cooperation and delegation. In turn, both 
cooperation and delegation were associated with diferent task 
clusters. We found that the cooperative role was mostly associ-
ated with automated decision aids which supported users in their 
decision-making process. We found this functionality in all seven 
task domains. For example, systems were used to aid users screen 
bags for dangerous objects [94], detect system malfunctions [89] or 
potholes [104], improve the production of orange juice pasteuriza-
tion [73], play games [24], diagnose [100], discover number patterns 
[26], and classify plants and animals [110, 137]. 

The characteristic of these cooperative tasks is that users com-
monly perceive some sort of information or prompt from a system 
which the users then can decide to follow or reject. Hence, users 
retain a sense of autonomy. Drawing on the defnition of trust, 
collaborative tasks should require less trust because the individual 
autonomy is greater and the dependency on another entity is less, 
reducing uncertainty and risk. However, need for trust in collab-
orative tasks might increase for situations of human-AI teaming, 
where the human team member is dependent on the performance 
of the system, such as [18, 24, 116] report. Such situations are char-
acterized by increased dependency, possibly leading to an increased 
need for trust. In addition, when users become passive or compla-
cent, the cooperative character might shift from cooperation to 
delegation. Passivity or complacency are usually reached in situ-
ations of over-trust. In turn, too much user engagement with the 
system might indicate that users trust the system too less, indi-
cating the case of under-trust. Hence, too little or too much user 
engagement for cooperative tasks might be a good indicator to cue 
a trust calibration intervention. 

In contrast to cooperation tasks, delegation tasks substitute hu-
man operators. Most predominantly, we found this functionality in 
the transportation domain for autonomous vehicles [2, 47, 61, 68– 
70, 84] but also in one study in which an automated player played 
the game Pong [50]. The characteristic of these delegative tasks 
is that the system operates primarily independent of the users. In 
addition, we found one particular case of automation substituting 
human operators in the case of a human-automation teaming task. 
In their paper, Johnson et al. [58] gave participants the task of gath-
ering information (taking photos of ground target waypoints). The 
task was to be completed with another human and an autonomous 
teammate (see also [10]). 

Unlike cooperative tasks, users are no longer in the position 
to choose whether they want to rely on or reject a system’s deci-
sion/action but instead users are forced to accept or reject a system 
as a whole. When delegating, one could say that users must ‘blindly 
trust’ the system. In turn, this requires more trust as the dependency 
on another entity is higher; hence, uncertainty and risks increase. 

Automation capabilities. Automation can refer to various dif-
ferent systems with varying capabilities, ranging from rather simple 
rule-based to sophisticated machine-learning algorithms. For most 
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Table 1: Task domains and the respective tasks of the studies included in this survey. 

Domain Task 
Screening of dangerous objects/subjects [4, 14, 15, 19, 36, 51, 54–56, 85, 94, 107, 117], 

Security & Safety detection of system malfunctions [89, 90], crime prevention [10], recidivism prediction [132], 
watch a video of a house search [66, 83] 
Responding to take-over requests [2, 6, 7, 47, 61, 68–70, 77, 84, 98], collusion avoidance [8], 

Transportation managing (air) trafc [31, 118], pedestrians interaction with AV [48], observe AVs [64, 119], 
drive in driving simulator [87, 96, 136] 
Screening tasks [17, 33, 44, 63, 81, 82, 127, 130, 135, 139, 140], gathering of information [58],Military mission planning [92], human-AI collaboration for search and destroy missions [116] 
Improving production [73, 133, 143], disassembly [5], moving objects [34, 35, 45], demand Production forecasting [39], harvesting [113], quality checks [142] 
trust game [3, 23], collaboration game [24], fanker task [25], image recognition [138, 144],Gaming fnance game [62], frst-person shooter game [67, 129], Pong [50] 

Medicine diagnostics [100], robot triage [102] 
Income prediction [40, 145], number pattern discovery [26, 27], pothole detection [104], classif-
cation of plants/animals/images [11, 75, 103, 110, 137], meal preparation [12], online dating Others [109, 141], hotel reviews [71], clearing tables [18], fnd housing [43, 124], navigation through 
buildings [101, 112], long-distance management of robots [126] 

studies of this survey, it was difcult to gain insights into what pow-
ered the automated systems, as many authors merely described their 
systems as automated. While the development of many complex 
automated technologies is driven by artifcial intelligence, we can-
not make specifc claims about these systems. For example, some 
papers examined robots (see e.g.,[3, 5, 6, 22, 24, 50, 130]). From 
previous work, we know that robots are increasingly equipped 
with artifcial intelligence (see e.g., [111]).However, in most pa-
pers this information is missing. In contrast, most autonomous 
driving studies included information on the automation capabili-
ties such as conditional automation levels (e.g., Level 3 - roughly 
75% automation), except for one study, which included a highly 
automated system (Level 4) [61]. However, we found fve stud-
ies that employed automation empowered by machine learning 
[71, 109, 110, 132, 141] and eight which specifcally referred to arti-
fcial intelligence [11, 12, 43, 83, 100, 118, 144, 145]. Some studies 
also referred to fctitious automated systems [94] and others to a 
Wizard-of-Oz manipulations [58]. McGuirl and Sarter [90] used 
a cover story and told participants they were interaction with a 
system that is based on a neural net. 

Required expertise. Following previous research, we difer-
entiate between tasks that require task expertise and those that 
do not. This might overlap to some degree with the risk of the 
task (see next paragraph) as some high-risk domains (e.g., mili-
tary, baggage screening, or diagnostics) inherently require task 
expertise. Others, such as driving autonomous cars or identify-
ing animals and plants, do not require explicit expertise (other 
than a driver’s license). However, we noticed that even though 
some tasks required task expertise (baggage screening), the study 
participants were non-experts (e.g., students). In fact, we noticed 
that only a few studies recruited experts to test their hypotheses 
[31, 66, 89, 90, 100, 113, 137, 140, 142]. 

We fnd this, albeit understandable due to limited resources and 
recruitment possibilities, problematic as experts react diferently 
to systems than lay people (see, e.g., [59]). However, some studies 

compensated for the reduced expertise by introducing training sets 
before the intervention [47, 70, 73, 145]. Moreover, Doshi-Velez and 
Kim [32] argue that when the target group is challenging to attain, 
recruiting lay users allows for a “human-grounded evaluation” 
which can be understood as a proxy for the general behavior. 

Risk of the task. To qualify for a task that requires trust, each 
task must involve a certain level of risk or uncertainty (see 2). Tasks 
that involve risks have also been described as high-stakes scenarios 
which can hold potential societal but also individual stakes. The task 
domains security and safety, military, medicine, and transportation 
inherently qualify as high-stakes scenarios. Tasks in the production 
domain can technically involve risks in terms of fnancial losses 
or physical risks at the workplace due to heavy machinery. The 
remaining tasks (such as income prediction, number pattern dis-
covery, pothole detection, prescription screening, classifcation of 
plants and animals, playing a game, prize prediction) involve fewer 
risks and might be less suitable for triggering trust. However, some 
studies increased vulnerabilities by introducing gamifcation strate-
gies in which participants were (fnancially) incentivized to perform 
well [10, 55] 

Interestingly, we noticed that a large domain, 
medicine/healthcare, commonly characterized as a high-stakes 
domain, was represented by only two papers. As it is important to 
learn more about trust in high-stakes domains, this is unfortunate. 
Revisiting the papers throughout the selection process, we noticed, 
however, that various papers from the health domain did not 
meet our criteria of trust calibration in the sense of a matching of 
system capabilities and trustworthiness perceptions. Instead, many 
papers aimed to increase users’ trust independent of the actual 
system capabilities. We speculate that this focus on trust increases 
might be the result of users generally under-trusting automated 
systems in the health domain. In contrast, we noticed that task 
domain automated driving has resulted in many eforts to assess 
and reduce unwarranted trust calibrations. 
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4.3 The trust calibration intervention 
In this section, we review the trust calibration interventions. We 
divided this section into four subchapters. In the beginning, we 
briefy discuss the study design choices and how these likely af-
fect the results of trust calibration interventions. Because any trust 
calibration consists of the matching of system capabilities and the 
perceived trustworthiness, we then review how the system capabili-
ties were assessed/manipulated and how trust was measured. Lastly, 
for the assessment of the trust calibration, these two information 
(the system abilities and users’ trust) have to be matched. In the 
subsection ’Measurement of calibration efects’, we summarize and 
discuss how the diferent papers accomplish this matching task. 

Study design choices. The selected papers difered in terms 
of the experimental design choices. In between-subjects design 
experiments, participants are randomly assigned to only one treat-
ment condition. In contrast, in within-subjects (or repeated mea-
sures) designs, participants are exposed to all treatment conditions, 
whereas mixed-design experiments employ both strategies. All 
design choices hold their specifc advantages and disadvantages. 
Between-subjects studies are usually shorter, reducing participants’ 
workload, and study or learning efects can be avoided. In contrast, 
within-subjects designs raise awareness for variables of interest 
but also allow to control for the variability between participants. In 
the context of trust, this point might be of particular importance as 
previous studies have shown that individuals difer in their propen-
sity to trust and their attitudes towards automation, both factors 
which afect trust [30, 41]. Despite this possible advantage of within-
over between-subjects designs, most papers (49) reported results 
of between-subjects designs, followed by 25 papers using within-
subjects designs, and 22 papers with mixed-design (between- and 
within-subjects manipulations). Many of the mixed-study designs 
aimed to test diferent calibration strategies over time - hence, in-
troducing a within (repeated) subjects component. This also means 
that, if researchers are interested in the development of trust over 
time, researchers have to apply within-subjects designs. 

System capabilities. Only few studies kept the system capabili-
ties fxed (see, e.g., [71]), or measured a system’s capabilities. Most 
studies manipulated the system’s capabilities. The most common 
strategy to achieve this was to vary the levels of system reliability 
(see, e.g., [4, 10, 14, 15, 20, 26, 27, 55, 69, 81, 82, 89, 94, 104, 107, 117, 
133, 137, 139, 140, 143]). For example, Chen et al. [15] presented 
participants with either 60%, 70%, 80%, or 90% reliable systems. Like-
wise, but choosing a within-subjects experimental design, de Visser 
et al. [27] let participants interact with a system that changed its 
reliability from 100% to 67%, 50%, and, fnally, 0%. 

In a similar manner, some studies manipulated changes in the 
system’s reliability to represent either increases, decreases or a 
constant system reliability. For example, Pop et al. (2015) divided 
participants into three reliability groups with one group of partici-
pants experiencing a decrease in reliability (100%-80%), a second 
group experiencing an increase in reliability (60%-80%), and a third 
group experiencing no change (80%-80%). Some studies also inves-
tigated the efects of stated reliability and observable reliability 
[141]. 

While manipulating the system’s reliability by controlling the 
exact reliability, some authors varied the system’s capabilities by 

contextual factors such as the weather. For example, Helldin et al. 
[47] let participants drive an autonomous vehicle in a driving sim-
ulator but manipulated the weather conditions (sight was afected 
by snow) or the terrain of the course (steep climbs & tight turns), 
which, in turn, afected the system’s reliability. 

Other strategies included introducing system failures or malfunc-
tions [68, 84], variations in the system’s confdence [89, 90, 145], 
the system’s accuracy [19, 94], the system’s ability [132], and the 
system’s credibility [20]. One subclass of system failures was the 
manipulation of error types by, for example, Huang et al. [50], who 
showed participants either a correct action, false-negatives, weak 
false-positives, false positives, or an incorrect action. 

Trust measures. Throughout the papers included in this sur-
vey, two major strategies of assessing trust could be observed: (1) 
perceived or subjective trust measures, and (2) demonstrated or 
objective trust measures. Encompassing subjective trust measures, 
one common way to assess whether users perceived a system as 
trustworthy were validated self-report scales. We found 16 studies 
(see, e.g., [26, 68, 69, 84, 107]) which used the Trust in Automation 
Scale by Jian et al. [57], at least two [10, 94] studies used a scale 
developed by Merritt et al. [93], and at least fve studies (see e.g., 
[4, 130]) used the trust predisposition scale by McKnight et al. [91]. 
We say "at least" as some studies also used very short ad-hoc 1-item 
self-report measures of trust (see, e.g.[15, 143]) which might be 
inspired by some of these validated scales. Moreover, Seong et al. 
[117] used the trust questionnaire by Llinas et al. [79], and de Visser 
et al. [27] used a combination of the scales by de Vries et al. [29], 
Lee & Moray [73], and Lewandowsky et al. [76]. Likewise, some 
studies [22, 68, 98, 100], used the Human-Computer Trust Ques-
tionnaire by Madsen and Gregor [86], whereas others [3, 56, 83] 
used a scale developed by Mayer and colleagues [95]. Other scales 
that were used are Holthausen’s et al. [49] Situational Trust Scale 
for Automated Driving, a scale used in Muir [99], the Usability and 
Trust Questionnaire developed by Chen [16], the Robot Trust Ques-
tionnaire by Schäfer [114], a scale to assess trust in human-robot 
collaborations [13], and Körber’s trust in automation scale [65]. In 
addition, some studies also employed linear trust meters [137], or 
visual analog scales [139]. 

While many of these scales diferentiate between the diferent 
trust subconstructs performance, process, and purpose, only few 
authors diferentiate between these subconstructs in their analy-
sis. For example, Fahim and colleagues [36] examined the efects 
of diferent emotions such as hostility on each trust subconstruct 
separately. Similarly, Esterwood and Robert [35] investigated the 
efects of diferent trust repair strategies on perceived performance, 
process, and purpose. Results of both papers indicate that inter-
ventions afected the trust subconstructs diferently. Hence, the 
missing diferentiation between them might be critical. 

In contrast to such subjective measures, many authors [89, 90, 
104, 145] opted to only measure participants’ behavior, indicated, 
for example, as responses to or compliance with the system and 
task performance [104, 145]. Many argued that such behavioral 
measures displayed a more objective trust measure than subjective 
self-reports (see, e.g., [14]). In addition to compliance and task 
performance, other performance measures were, for example, error 
rates and response times [81]. Most often, we found, however, that 
researchers used a combination of both self-report measures and 
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behavioral measures (see, e.g.,[4, 14, 19, 26, 47, 50, 55, 61, 84, 94, 117, 
130, 139, 140]). In two studies, researchers also added qualitative 
questionnaires to advance their quantitative trust assessments [84, 
90]. In rare cases, psychophysiological measures were implemented 
to assess trust, such as EEG [20, 25], EMG [58], electrocardiograms 
[58], and eye-tracking [70, 81]. 

In many cases, trust measures were accompanied by subcon-
structs of trust such as perceptions of system accuracy [90, 143], 
predictability [68, 73], and reliability [15, 68, 107, 133], or trust 
related measures such as perceived usability [4], frustration [4], 
perceived humanness [26, 27, 55, 58], perceived intelligence [27], 
workload [58], and understanding of the system [132]. 

In sum, we see a wide range of diferent methodologies. Espe-
cially, the increased use of validated scales ensures the quality of 
the measurements. In contrast, the use of ad-hoc 1 item measures 
makes these measures less reliable. Yet, their use was often justifed 
by increased usability and lowered intrusiveness (see e.g., [104]). In 
these cases, concerns regarding the measurement quality were met 
by combining self-reports with behavioral measures or psychophys-
iological assessments. However, we also noticed that only a few 
studies diferentiated between diferent subconstructs of trust (per-
formance, process, purpose) which is inherently included in many 
scales (e.g., [91]) but authors did not make use of this information. 

Measurement of calibration efects. Most commonly, the 
trust calibration was measured as the statistical diferences of trust-
worthiness perceptions of systems with high reliability and trust-
worthiness perceptions of systems with low-reliability groups, ex-
amined through analysis of variance (see, e.g.,[4, 15, 26, 47, 58, 61, 
68–70, 82, 84, 89, 90, 107, 117, 130, 140, 145]). The result is some sort 
of ordinal matching, which assumes that we can speak of calibration 
when systems with higher capabilities elicit higher trustworthiness 
perceptions than systems with lower capabilities. 

While this operationalization is easy to implement and will allow 
us to compare the perceived trustworthiness of diferent systems, 
we think it comes with a signifcant limitation: It is a relative mea-
sure. This method allows us to infer that users rightfully diferenti-
ate between diferent systems, perceiving one as more trustworthy 
than the other. However, we do not know whether, for example, 
the system with lower capabilities is perceived as too (little) trust-
worthy, inducing over-trust (under-trust). The perceived trustwor-
thiness might be reduced in comparison with a high capability 
system, but we cannot out rule that users still overestimate (under-
estimate) its trustworthiness. Likewise, a high capability system 
might elicit too much (less) perceived trustworthiness, inducing 
over-trust (under-trust). 

Some authors work with correlations to get a better sense of 
perceived trustworthiness and system capabilities [5, 12, 24, 39, 66, 
67, 81, 94, 130, 139, 142]. Here the larger the correlation between 
perceived trustworthiness and system capabilities, the better the 
calibration. For example, Merritt et al. [94] operationalized the trust 
calibration through trust sensitivity, which “refects the extent to 
which a user’s trust changes as the automation’s actual reliability 
level changes.” (p. 36). The authors achieve this through a repeated-
measures experimental design for which they varied the actual 
reliabilities. While this operationalization is closer to the actual 
defnition of trust calibration, Merritt et al. [94] also discuss the 
possible limitation of this procedure: “Individuals with a great deal 

of trust sensitivity (meaning that their trust changes dramatically as 
actual reliability changes) might actually either overreact or under-
react to the changes, thereby resulting in suboptimal automation 
reliance decisions.” (p. 36) 

A third way to measure the trust calibration was to measure over-
, under-, and appropriate trust as the behavioral deviation (reliance) 
from the ideal behavior [27, 50, 55, 104, 110, 132, 137]. For example, 
Jensen et al. [55] asked participants to identify dangerous vehicles 
in a set of images. Participants could manually check the images 
or let an automated aid do it for them. Participants were informed 
that they would be credited for speed and accuracy. Depending on 
the reliability condition, the authors could then defne the ideal 
reliance on the aid in a way that delegating 18 images to the aid 
would identify as over-trust but delegating only 10 images would 
identify as under-trust. However, it must be noted that behavior can 
but does not have to be the result of users’ trust. It is, for example, 
possible that users simply wanted to reduce their own workload 
and, hence, relied more on the automation. Overall, we found 18 
papers which included such a behavioral reliance measure. 

4.4 The calibrations dimensions 
Because we identifed many diferent trust calibration interventions, 
we extracted their commonalities and diferences with the aim 
to allow us to summarize and abstract these various strategies. 
As a fnal result, we abstracted four diferent dimensions of trust 
calibration: (1) exo versus endo trust calibration, (2) warranted 
versus unwarranted trust calibration, (3) static versus adaptive 
trust calibration, and (4) capabilities versus process-oriented trust 
calibrations. 

(1) Exo versus endo trust calibrations. With the dimen-
sions’exo’ and ’endo’, we refer to the point in time when trust 
calibrations occur. While ’exo’ refers to a point in time outside the 
interaction with a system (hence, before or after the interaction), 
’endo’ refers to an interventions that occurs while participants 
interact with a system. 

Exo calibrations aim to align the users’ trustworthiness per-
ception of the system with the actual trustworthiness as early as 
possible in the interaction (initial) or try to achieve alignment after 
the interaction. One way to achieve this is, for example, to inform 
users about a system’s capabilities and limitations prior to inter-
acting with the system. To that end, Khastgir et al. [61] found that 
increasing knowledge about a system’s capabilities and limitations 
increased trust in high and low capability-autonomous vehicles and 
reduced the number of accidents for low capability-autonomous 
vehicles. Similar results were obtained by Kraus et al. [69], who 
provided information about the system’s reliability and reputation. 
Moreover, Kraus and colleagues [69] found that providing prior 
information afected users diferently depending on their need for 
cognition. To achieve an alignment after an interaction, some stud-
ies provide feedback about the user and system performance (see 
e.g., [5, 14, 82]). 

Like exo trust calibrations, endo calibrations ofer insights into 
a system’s capabilities and limitations. In contrast to exo trust cali-
bration strategies, endo trust calibrations allow users to gain these 
insights while engaging with a system. This is achieved by, for exam-
ple, presenting information about a system’s confdence throughout 
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the interaction [90, 104, 145] using cues or warning signals or by 
increasing a system’s transparency through explanations [108]. 

The papers of this review ofer a wide range of diferent calibra-
tion strategies, aiming to calibrate trustworthiness perceptions at 
diferent stages (exo = prior & after; endo = during) of the interac-
tion with systems. An overview of both exo and endo calibrations 
can be found in Table 2. 

(2) Warranted versus unwarranted trust calibration. In its 
actual sense, warranted trust refers to the accurate calibration of 
trust, refecting a system’s trustworthiness [53, 74]. Hence, pro-
viding knowledge about a system’s capabilities and limitations (as 
suggested in the previous section) should increase warranted trust. 
However, other factors have also been identifed to increase the 
trust users bestow in a system, such as a system’s reputation [69] 
or anthropomorphism [26, 55]. Yet, while a system’s reputation or 
a human-like appearance might serve as a cue/heuristic to assess 
whether to trust or not to trust a system, neither of these factors 
genuinely afect the system’s reliability. Hence, such factors in-
duce unwarranted trust and can potentially be misused to make 
unreliable systems appear more reliable. 

(3) Static versus adaptive trust calibration. Static versus 
adaptive trust calibration refers to a system’s capability to assess 
whether the user is currently under- or over-relying on the system. 
Most exo (i.e.,initial and later) trust calibrations surveyed in this pa-
per, for example, are inherently static. They inform all users equally 
about a system’s capabilities and limitations at the beginning or the 
end of the interaction and do not ofer insights while users are using 
a system. While some users, for example lay users, might initially 
need more information, others, for example expert users, likely do 
not require the same information. Similarly, after using a system 
multiple times, static trust calibrations likely become redundant for 
users. 

However, an exo trust calibration does not have to be static. For 
example, if a system is provided with information about its user (e.g., 
level of experience as a heuristic to likely over- or under-reliance) 
and the system can adapt to this information, trust calibration 
is adaptive. Moreover, during the interaction, endo calibrations 
which increase a system’s transparency through explanations or 
by providing model internals would only qualify as adaptive trust 
calibration when this information is given in cases when users 
display under- or overreliance. 

Two examples of adaptive trust calibrations comes from Oka-
mura and Yamada [104] as well as Chen et al. [18]. Okamura and 
Yamada [104] implemented specifc trust calibration cues, which 
were displayed when participants relied too little and too much on 
the system. For example, cues were shown whenever a user did not 
rely on the system, although the system’s current prediction accu-
racy was high. In turn, cues were shown whenever a user relied on 
the system, although the system’s current prediction accuracy was 
low. Okamura and Yamada [104] could show that participants who 
received adaptive trust calibration cues outperformed those who 
continuously received information about the system’s performance. 

Similary, Chen and colleagues [18] developed a computational 
model, the Partially observable Markov decision process (POMDP), 
which integrates the extend users trust the system into the system’s 
decision making by, among others, inferring users’ trust through 
interactions. Through an experiment Chen et al. could show that 

the system adopted to users’ level of trust which increased the 
overall human-robot team performance. 

Importantly, adaptive trust calibration strategies signify a change 
of adjustments. While most calibration strategies are directed to 
change the users’ attitudes and behavior (i.e., adjusting the user to 
the system), in adaptive strategies the system also adjusts to the 
users. 

(4) Performance versus process-oriented trust calibrations. 
With these dimensions, we follow the in the introduction presented 
trust model by Lee and See [74] which includes the dimensions 
performance, process, and purpose. Performance trust calibrations 
inform users about the specifc capabilities and limitations of a 
system, such as information about a system’s confdence [90, 104, 
145] or general information about a system’s reliability [61, 69]. 
Such performance-oriented trust calibrations do not inform users 
how the system arrived at a decision. 

In contrast, process-oriented trust calibrations such as explana-
tions clarify the inner workings of a system. The task of translating 
information about the process into information about the perfor-
mance of a system lies with the users. In turn, users vary, among 
other factors, in their literacy and experience which makes it likely 
that not all users will proft equally from such process-oriented 
calibrations. 

4.5 Results of the trust calibration interventions 
The following paragraphs provide an overview of the trust cali-
bration results. In doing so, it is not our intention to provide an 
extensive insight into all 96 studies and their theoretical implica-
tions and limitations. Instead, we intend to provide a rather general 
overview of common trends and possible conficting results. 

Unsupported trust calibrations. Many of the studies in this 
survey included control conditions, allowing us to make assump-
tions about user’s unsupported, natural trust calibrations. Results of 
these eforts support the notion that users can and do diferentiate 
between low and highly reliable systems (see e.g.,[19, 20, 69, 130]), 
with more reliable systems being perceived as more trustworthy 
than less reliable systems. Yet, some studies also found that low-
reliability systems tended to be perceived as more trustworthy than 
they were, leading to over-trust, whereas high-reliability systems 
tended to be perceived as less trustworthy than they were, lead-
ing to under-trust (see, e.g., [55]). Various studies also reported 
that trust gradually developed over time and that special attention 
should be paid to the early interaction processes, which tend to be 
decisive for trust development, and, hence, trust calibration [143]. 

While the users’ perceptions might change and develop, relia-
bility changes in the system also afected users’ trustworthiness 
perceptions. One study found, for example, that users reacted rather 
slowly to changes in reliability and that such changes depended 
on the direction of reliability change [133]. Decreases in reliability 
from perfect to 80% were perceived as less reliable than a constant 
reliability of 80%, whereas increases in reliability did not beneft as 
much, and reliability perceptions remained lower than the increase. 
In addition, Lu and Sarter [82] found that participants trusted sys-
tems more following the recovery from small and short reliability 
changes than large and short reliability drops. If system failures 
or malfunctions due to lower reliability occur, two studies showed 
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Table 2: Overview of the diferent calibration strategies sorted by time of intervention. 

Point of intervention Intervention 

Prior to the interaction 

During the interaction 

After the interaction 

Prior information about the system such as capabilities, reliability, consistency, consensus, 
distinctiveness of the automated aid’s performance, or malfunctions; training phase; 
cognitive forcing 
Cues (alarms, warning signals, augmented reality cues, confdence cues or updates); un-
certainty displays; communication style (command vs. status); explanations; interactivity 
(e.g., promise to perform better in the future) 
Feedback type (automation feedback independent of user, feedback on trust behavior of 
user); performance feedback 

that the error type also afected trust calibration diferently. For 
example, Chen et al. [14] found that false alarms reduced perceived 
trustworthiness more than misses. 

Similarly, Lee and Moray [73] found that after transient mal-
functions, performance and trust dropped but recovered quickly. 
In contrast, chronic malfunctions only decreased trust but not per-
formance. The authors argue that users can adapt to chronic low 
reliability and compensate with their skills at the cost of increased 
workload. In turn, Guznov et al. [44] found that increased workload 
led to more reliance on a system. To assess trust, one paper found 
that trust is best refected at each moment in the interaction rather 
than at the end of the interaction [139]. This might be explained by 
results from Lee and Moray, who found that immediately preceding 
events afected trust the most. 

Moreover, two papers [48, 127] examined whether malfunctions 
of subsystems afected the perceived reliability of the whole system. 
Holl’́ander and colleagues [48] found that users generally trusted 
a subsystem more than the system as a whole, and if a subsystem 
failed, this malfunction reduced trust in the whole system. These 
results are supported by Walliser et al. [127] who found that a single 
inaccurate system lead to more verifcations and lower subjective 
trust for similar but independent systems. 

To conclude, the reviewed studies indicate that users are gen-
erally sensitive to a system’s reliability as well as to changes in 
reliability. The results also suggest that this sensitivity is oftentimes 
not enough and comes at the cost of over- and undertrusting as 
well as other coping mechanisms such as increasing one’s attention 
and workload to surveille the system. Because of these limitations, 
the results also confrm that trust calibrations should be supported 
to assist the users. 

Supported trust calibrations. While many studies included 
control conditions to make assumptions about trust calibrations in 
the wild, the main focus of most studies was, however, to support 
users through diferent interventions to appropriately calibrate their 
trust in a system. The aim of many these interventions was to make 
systems more transparent. Results of these eforts were mixed. For 
example, it was found that uncertainty information [47], the display 
of confdence levels [145], and reliability updates [90] facilitated an 
appropriate trust calibration and performance. Yet, uncertainty cues 
also increased workload in some cases [70] but not in others [92] and 
led to instances of over-trust when the cues were not reliable [140]. 
Ribeiro et al. [110] found that displaying class probabilities did not 
help users to appropriately assess a system’s trustworthiness (see 
also [6]). However, Rechkemmer and colleauges [109] investigated 
the efects of false transparency interventions by providing users 

with a wrong reliabiltiy information. The authors found that users 
quickly disregarded the wrong information and adapted to the 
observable reliability. 

Timing of the support. The efectiveness of interventions also 
varied depending on how and when they were shown. Yang and 
colleagues [139] found that likelihood alarms took more time to 
adjust trust calibration than binary warning signals. Also, updated 
system reliability cues improved trust calibration better than a static 
display of system reliability [90]. Similarly, adapting the cue display 
to users’ trust behavior was more benefcial than a static display of 
the system’s reliability [104]. Informing users about the reliability 
of a system, for example, helped to appropriately adjust trustwor-
thiness perceptions [61] which the authors coined as “informed 
safety”. These results are in line with fndings by Johnson et al. [58] 
who found that one way to ensure a calibrated level of perceived 
trustworthiness was to include a training phase. Yet, results by 
Leichtmann et al. [75] indicated that merely educating users about 
how a system functions was not as helpful as including explana-
tions. Moreover, providing cognitive feedback information[117] or 
forcing users to critically assess the trustworthiness of a system, 
[12] improved the trust calibration. Yet, Alhaji et al. [5] could show 
that system feedback was redundant when the system performed 
well. 

After the interaction, some studies provided feedback to the 
users about the users’ performance or the systems’ performance. 
Again, the results were mixed. Lu and Sarter [82] found that neither 
performance feedback, users’ or system’s performance, afected 
the trust calibration. Yet, others found positive efects of feedback 
[14, 15, 94]. 

Explanations. Another way to adjust the perceived trustwor-
thiness was through explanations. The results of these studies were 
mixed. For example, Zhang et al. [145] found that local explana-
tions did not afect the trust calibration. In contrast, Yang et al. [137] 
found that visual explanations supported an appropriate trust cali-
bration. Testing diferent explanations, Wang and colleagues [132] 
found that feature importance and feature contribution explana-
tions supported the users, whereas the efects of nearest neighbors 
and counterfactual explanations were inconclusive. Naiseh and 
colleagues [100] found that example-based and counterfactual ex-
planations were more understandable to their participants than 
local, global, and no explanation conditions. In addition, the efects 
of explanations might also be dependent on the systems’ reliability. 
Wang et al. [130] found, for example, that explanations were only 
benefcial for low reliable systems and that very reliable systems 
did not beneft from the explanation. Moreover, Lai and Tan [71] 
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found that increased task difculty reduced the positive efects of 
explanations. 

Special case: Trust repair strategies. A whole section of pa-
pers from this survey had the designated aim to repair trust after a 
system malfunction. One common repair strategy was to include 
some sort of system reaction into the interaction with the users 
such as an apology or a promise. To that end, Kohn and colleagues 
[64] found that apologies worked better to regain trust than a sys-
tem denying an error. However, Esterwood and Robert [34] could 
show that promising no errors in the future as well as explana-
tions for why the error happened showed greater efects than mere 
apologies (see also results by [136]). In contrast to that, Robinette 
et al. [112] and Schelble et al. [116] found no efects of apologies 
on trust repair. 

Examining possible moderating variables, Kox et al. [67] found 
that trust repair strategies profted the most when accompanied 
by an expression of regret, while including diferent levels of un-
certainty had no efect on the trust repair [67]. In a similar vain, 
Kim and Seong [62] examined the efects of anthropomorphism 
and error attribution. The authors found that machine-like agents 
profted more from external attributions of blames than internal 
attributions, whereas it was the opposite case for human-like agents 
which profted the most when acknowledging a mistake (i.e., inter-
nal attributions). 

In addition, some scholars also examined whether trust repair 
strategies afect diferent trust subconstructs diferently. For exam-
ple, Esterwood and Robert [35] found that perceptions of a system’s 
abilities were generally unafected by any repair strategy. In con-
trast, repair strategies increased the perceived benevolence and 
integrity of a system. 

Calibration Moderators. Some studies also examined mod-
erating variables which afect the trust calibration. Usually, these 
moderating variables are not directly related to the system but de-
scribe variations between diferent people or contexts. For example, 
Kraus et al. [69] examined how the system reputation, individu-
als’ need for cognition disposition, and personality afected trust 
calibration. The authors found that a lower perceived reputation 
also decreased individuals’ trustworthiness perceptions, and the 
individuals with a high need for cognition relied more on reliability 
information in their trust calibration. In terms of personality, Kraus 
et al. [69] found that higher levels of materialism, as well as a regu-
latory focus, were associated with higher levels of trust. Pop and 
colleagues [107] found that individuals who held high expectations 
towards systems were more sensitive to changes in reliability and 
calibrated their trust levels more appropriately for reliability in-
creases but not decreases as compared to individuals who had lower 
expectations. In addition, individuals’ level of experience afected 
the trustworthiness perceptions [103], and one study even found 
that experts were generally less willing to rely on automation than 
lay users [113]. 

In addition to these factors, which relate to the individual user, 
others found diferences depending on the system’s appearance. For 
example, Jensen et al. [55] found that the more human-like a system 
was, the more it was perceived as benevolent, which did not trans-
late into diferences in behavior trust. This is in line with fndings by 
de Visser et al. [27], who found that more human-like systems were 
also perceived as more trustworthy – a fnding we interpret as the 

elicitation of unwarranted trust (see 4.4). Contrasting these results, 
Christoforakos et al. [22] found no efects of anthropomorphism. 

To achieve human-likeness strategies also varied. De Visser and 
colleagues [27], for example, compared a human agent with an 
avatar and a computer. In turn, Jensen et al. [55] compared varia-
tions of the communication style and Gupta et al. [43] varied the 
interfaces between conversational interfaces and web-based graph-
ical interfaces. In addition to the anthropomorphism of a system, 
the perceived expertise of a system had no efects on trust in cases 
when the system was inaccurate [25]. Yet, Madhavan and Wickens 
[85] found that the perceived expertise was also inconclusive if the 
system operated well. 

Focusing more on the context than on the user or the system, 
Chen et al. [19] found that trustworthiness perceptions also de-
pended on the severity of the outcome, with more severe outcomes 
reducing the perceived trustworthiness. This fnding aligns well 
with the defnition of trust as a process in which one party becomes 
vulnerable to another party. The greater the vulnerability of one 
party, the more trust is required. In relation to that, the authors also 
found that trust calibration might vary between diferent domains 
(here: pharmacy versus online banking). However, the results are 
challenged by fndings from Yin et al. [141] who found no efects 
of stakes in trust. 

Mediators of trust calibrations. One rather small portion of 
papers examined the psychological processes of the trust calibration. 
For example, Fahim et al. [36] suggested that emotional reactions 
towards a system can partly explain the resulting trust attitude. 
Interestingly, their results showed that hostility mediated the rela-
tionship of a system’s reliability and the perceived system integrity 
but did not so for the perceived abilities and benevolence of a sys-
tem. The results are not only one of the few which highlight the 
importance of afective processes but also which make it evident to 
diferentiate between diferent subconstructs of trust. 

In sum, we found that results were mixed. Generally, users were 
perceptive of a system’s capabilities and trustworthiness, and the 
perceived trustworthiness developed over time. However, users 
did not react appropriately to changes in reliabilities. Decreases in 
reliability resulted in even steeper trust decay, whereas increases did 
not result in a similar trust increment. As it is likely that system’s 
capabilities will vary depending on the context, these results are 
critical for trust calibration interventions. Future studies should 
fnd ways to bufer such decreases in reliability and boost increases. 
One way to achieve this might be an explicit training phase. 

To facilitate the trust calibration, one broader strategy was to 
implemented interventions to increase transparency (e.g., cues, 
warning signals, explanations). However, increases in transparency 
were no panacea for appropriate trust calibrations. System uncer-
tainty information, confdence levels, and reliability updates were 
helpful, but also increased users’ workload. Especially, the results 
for explanations were mixed with fndings indicating advantages 
but also null fndings. 

5 SUMMARY AND TAKEAWAYS 
In this survey, based on a literature body of 1000+ papers, we re-
viewed 96 empirical studies which aimed to calibrate users’ trust in 
automated systems. In doing so, we provide an extensive overview 
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of the study design choices (samples, tasks, systems, measures, 
interventions), the measurement of the trust calibration, and an 
overview of the studies’ results. For each section, we refect on how 
these choices afected the results and elaborate on how to over-
come possible limitations. The critical points of these refections 
are summarized below. 

5.1 Current trends 
• Moving from trust to calibrated trust. Overall, we found 

that many studies have recognized that merely increasing 
users’ trust is not sufcient but that we need to arrive at 
calibrated levels of users’ trust. 

• Diverse domains. Studies in this survey come from various 
domains such as security and safety, transportation, mili-
tary, production, gaming, medicine, and others. However, 
we noticed that only very few of the surveyed studies came 
from the medical/health domain (n=2). With the increased 
application of automated systems powered by artifcial intel-
ligence, we see great potential for future studies to fll this 
gap. 

• Fewer experts and less risk. As a result of the often dif-
fcult recruiting process, we found that many papers chose 
systems that require expert knowledge but did not recruit 
experts. Similarly, we found that the individual risk of users, 
a prerequisite for trust, was relatively low. However, for both 
problems, we also found adequate solutions. The lack of ex-
pertise was compensated by including training sessions, and 
risk was increased by introducing (fnancial) incentives for 
task performance. 

• Moving forward to complex automation. The automated 
system was not well defned for most of the studies surveyed 
in this work. While automation was previously predomi-
nantly used as a tool to support human workfow, recent 
algorithm- and artifcial intelligence-based systems increas-
ing assume agency. Such machine agency competes with 
human agency and is likely perceived diferently from less 
agentic systems [120]. Moreover, such a sense of agency is 
critical in the context of trust as increases in agency im-
ply increases in vulnerability. For static automated systems, 
the outcome becomes more predictable than outcomes of 
systems that are powered by, for example, deep learning 
algorithms. 

• Measuring trust. We saw many ways to measure trust, 
such as self-reports, behavioral and psychophysiological 
measures, such as EEG, EMG, or eye-tracking. This wide 
spectrum ofers researchers various methods to choose from, 
depending on what is most appropriate for their task/system. 
In situations where long self-report scales are less feasible 
(e.g., situations that require a lot of workload), researchers 
can rely on short one-item measures, behavioral indicators, 
and psychophysiology. 

• Understanding or trusting. Many calibration strategies 
increased the transparency of the systems either before the 
interaction with the system through prior information about 
the systems’ capabilities or during the interaction through 
reliability cues, confdence updates, explanations, and alarms. 

This trend points to an interesting interaction of trust and 
understanding. As proposed earlier, if all a system’s doing 
were understandable and predictable, trust would not be 
needed due to lacking vulnerability and risk. However, some 
understanding seems to be necessary to promote trust—the 
question is, then, how much understanding is necessary? As 
McAllister [88] suggested, "the amount of knowledge neces-
sary for trust is somewhat in between total knowledge and 
total ignorance" (p. 26). We think this question poses great 
potential for the human-machine interaction community. 

5.2 Challenges 
• What makes a good calibration measurement? We iden-

tifed three diferent strategies to measure the trust calibra-
tion: a relative measure, a correlational measure, and a be-
havioral measure. The relative measure does not quantify the 
calibration per se. Instead, it allows us to compare diferent 
groups, for example, a group that received an intervention, 
with a group that did not. This is problematic as it does not 
inform about the actual matching of a system’s capabilities 
with its perceived trustworthiness and, consequently, does 
not diagnose under- or over-trust. A better way to connect 
a system’s capabilities with its perceived trustworthiness 
is through correlational measures, as it quantifes the ac-
tual relation of both measures. The defnition of under- or 
over-trust might vary, however, depending on the selected 
measures, and should be defned prior to the data collection 
through, for example, pre-tests. One straightforward way 
to assess the trust calibration was to measure behavior and 
conclude whether users relied too much or too less on the 
system. However, this is only feasible for cooperative sys-
tems where users can choose to reject or accept a system’s 
behavior/decision. For delegative systems, it becomes more 
challenging to assess under- or over-trust. At the most, one 
could observe users’ take-over behavior. 
To conclude, it remains complicated to operationalize the 
trust calibration as trust operates on a diferent latent scale 
than the also latent system’s capability measure, making it 
impossible to compare both directly. Hence, we advise future 
researchers to carefully consider the operationalization and 
avoid using especially relative measures. It should be ideally 
guided by the question of identifying under- and over-trust. 

• Interventions as a second level of trust calibration. Es-
pecially the results of one study [140] showed that adding a 
trust calibration intervention (here by including uncertainty 
cues) resulted in participants trusting the cues too much. 
This case exemplifes well that by adding more information, 
we also add another layer of trust. Similar cases have been 
found for explanations. Results by Poursabzi-Sangdeh et al. 
[108] suggest that providing users with more information 
(through increased interpretability and transparency) de-
creased the user’s capabilities to detect and correct mistakes 
by the system. Just as the system can lead to over-trust, in-
troducing calibration measures can also backfre. To avoid 
such miscalibrations, any intervention needs to go through 
thorough testing. Moreover, grounded in dual-processing 
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theories of cognition, adding additional information might 
just serve as a heuristic cue, leading to quick reliance merely 
on the basis simply any additional information being present. 

• Is it ok to induce unwarranted trust? We found that 
some studies examined trust calibration strategies that did 
not relate to the system’s capabilities, for example, the sys-
tem’s reputation [69] or anthropomorphism [26, 55]. How-
ever, according to the defnition of trust calibration, we can 
only speak of calibrated trust when the users’ perceived 
trustworthiness refects the system’s actual trustworthiness. 
Hence, the efects of reputation or anthropomorphism in-
duce, strictly speaking, unwarranted trust. Is this justifed? 
While we cannot provide a normative answer to this ques-
tion, we also want to point out that this is not a matter of 
choice for some systems. Wherever users interact with an 
embodied agent or a robot, anthropomorphism will come 
into play. Likewise, (brand) reputation cannot be excluded 
from a system. By pointing toward these issues, we hope to 
foster future debates. 

• From static to adaptive calibration strategies. In the 
third dimension of trust calibrations (see 4.4), we diferenti-
ate between static versus adaptive calibrations. While static 
calibrations (e.g., providing prior information before the in-
teraction or providing system updates during the interaction) 
do not adapt to the individual user, adaptive calibrations can 
be individualized to assess users’ momentary under- or over-
trust. Static interventions like providing prior information 
about a system’s capabilities expect the user to adapt to the 
system. Miscalibrations are then the result of users failing to 
calibrate. In contrast, for adaptive calibrations, the system 
adapts to the users’ needs and miscalibrations become the 
result of the system failing to calibrate to the user. 
We observed that a majority of interventions employed a 
static calibration strategy which treats all users equally, ex-
pecting that users adapt to the system. We see great potential 
for system developers to change this imbalance and to strive 
for adaptive calibration strategies which shift the burden 
of calibrations away from the users and more towards the 
system itself. Two great examples of how a system can adapt 
to the users’ level of trust come from Okamura and Yamada 
[104]mand Chen et al. [18]. 

5.3 Limitations 
As with every work, this survey comes with specifc theoretical and 
methodological limitations. First, from a theoretical perspective, 
we follow Lee and See’s [74] defnition of calibrated trust as "trust 
[that] matches the true capabilities of the automation" [74, p. 57]. 
However, limiting the trust calibration process to matching only 
the capabilities of systems to trustworthiness perceptions arguably 
limits one’s defnition of trust. As we delineated in section 2 of this 
paper, a system’s capabilities (i.e., it’s performance) is only one of 
three factors which contributes to trust. Besides performance, a 
system’s process (the inner workings of a system) and purpose (the 
intentions with which a system is build) shape the trust process. For 
example, Tolmeijer et al. [123] found that ethical decision making 
system were perceived as more capable (catering to our defnition 

of trust) but also less moral (catering to the perceived purpose of a 
system). Similarly,Textor and colleagues [122] presented with two 
similarly capable system which difered in their ethical behavior. To 
conclude, we have limited our survey to investigations which cater 
to only of three possible factors in the trust calibration process. 

Second, in the calibration dimensions section (4.4), we have dis-
cussed warranted and unwarranted trust calibrations, using the 
example of anthropomorphism. We argued that a human-like ap-
pearance might serve as a heuristic to increase trust in a system 
without genuinely afecting the system’s capabilities, leading to 
unwarranted trust. However, unlike Lee and See [74], Jacovi and col-
leagues [53] have argued that calibrated trust "is trust that is caused 
by trustworthiness (to some contract)" (p.632). By that defnition, if 
the contract includes a human-like appearance of a system, anthro-
pomorphism would lead to warranted trust as anthropomorphism 
has been included in the a priori system specifcations. 

From a methodological perspective, our results are limited to 
English language texts. Moreover, the largest part of the papers we 
found was screened by a single coder. While this might appear less 
thorough than a screening process which includes more coders, we 
think that the high inter-rater agreement (Krippendorf’s alpha of 
.83) of the training phase justifes our procedure. The single coder 
should have been sufciently trained to follow our selection criteria 
as closely as possible. 

5.4 Recommendations for Practical 
implications 

To advance future studies on trust calibrations, in this section we 
discussed in-depth the diferent decision stages of designing such 
interventions. We highlighted the four dimensions of trust calibra-
tion—initial versus dynamic trust calibrations, warranted versus 
unwarranted trust calibrations, static versus adaptive trust calibra-
tions, and capabilities versus process-oriented trust calibrations—to 
assist in the planning and interpretation of future studies, and 
pointed to current trends and challenges of the trust calibration 
task. As a last and fnal step, we developed a list of recommendations 
as a hands-on guide for practitioners and academics alike: 

(1) Do not just try to increase trust but try to reach levels of 
calibrated/appropriate trust. Operationalizing the trust 
calibration (i.e., matching the system capabilities with users’ 
trustworthiness perceptions) is difcult. Try to think of ways 
how to identify that a user is currently over- or under-
trusting. 

(2) Be aware whether your task is characterized by cooperation 
or delegation. Do users work together with the system (e.g., 
as with most decision aids) or does the system substitute the 
users’ action (e.g., as with Level 3 autonomous driving)? Be 
aware that delegation tasks likely require users to trust the 
system more than for cooperative tasks. 

(3) If task expertise is needed, try to recruit experts when 
testing your system. If this is not possible include training 
phases. 

(4) Use validated scales to measures the perceived trustworthi-
ness. If possible include a variety of measures. Combine, for 
example, self-reports with behavioral measures (e.g., compli-
ance with the system or reaction times). 
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(5) Know of the diferent ways to calibrate users’ trust-
worthiness perceptions. Ask yourself when the calibration 
should/can happen: before, during or after the interaction? 
Is the calibration warranted? For example, anthropomor-
phizing might increase users’ trust but does the resulting 
trust perception refect the system’s capabilities? Also, ask 
yourself if you can implement ways in which the system can 
adapt to the users. The four dimensions which we developed 
in the section 4.4 will help in your decision-making. 
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