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Abstract. Feature ranking is beneficial to gain knowledge and to iden-
tify the relevant features from a high-dimensional dataset. However, in
several datasets, few features by itself might have small correlation with
the target classes, but by combining these features with some other
features, they can be strongly correlated with the target. This means
that multiple features exhibit interactions among themselves. It is nec-
essary to rank the features based on these interactions for better anal-
ysis and classifier performance. However, evaluating these interactions
on large datasets is computationally challenging. Furthermore, datasets
often have features with redundant information. Using such redundant
features hinders both efficiency and generalization capability of the clas-
sifier. The major challenge is to efficiently rank the features based on
relevance and redundance on mixed datasets. In this work, we pro-
pose a filter-based framework based on Relevance and Redundancy
(RaR), RaR computes a single score that quantifies the feature relevance
by considering interactions between features and redundancy. The top
ranked features of RaR are characterized by maximum relevance and
non-redundance. The evaluation on synthetic and real world datasets
demonstrates that our approach outperforms several state-of-the-art fea-
ture selection techniques.

1 Introduction

In high-dimensional feature spaces, feature ranking is an essential step for fea-
ture analysis and elimination of irrelevant features. Such irrelevant features affect
the prediction and performance of classifiers [?]. In automotive applications, the
data from several sensors (continuous values), status bits, gear-position (cate-
gorical values) and calculations forms a mixed dataset with a large number of
features. In such a feature space, a set of features interact amongst themselves
and these interactions are strongly correlated to the target class. For example,
engine-temperature and fuel quality are two essential features required to pre-
dict engine-performance. On analyzing its individual correlations to the target,



each feature is weakly correlated to the engine’s performance. However, engine-
performance is a combined outcome of engine-temperature and fuel quality. That
is, their interactions contribute to the target predictions when used together. In
such cases, assigning low relevance scores based on individual correlations is mis-
leading. Hence, to draw conclusions on the relevance of engine temperature, it is
necessary to assess its role in multiple subspaces. In addition to the multi-feature
interactions, some features may have redundant information. Following our au-
tomotive example, certain signals are measured or calculated multiple times in a
vehicle for safety reasons. These redundant signals provide similar information,
but are not necessarily identical. In such a scenario, two redundant features have
the same magnitude of relevance to the target class. However, using both fea-
tures for a prediction model is unnecessary as they provide similar information.
Elimination of redundant features reduces the computational load and enhances
the generalization ability of the classifier [?]. All aforementioned problems are
motivated with examples from our application, but they exist in several other
domains such as Bio-informatics [?] and Media [?].

The first challenge lies in estimating the feature relevance based on interac-
tions between the features and the target. Evaluating all possible feature combi-
nations for these interactions results in an exponential runtime w.r.t. the total
number of features. Thus, it is necessary to perform the evaluations in an effi-
cient way. The second major challenge lies in measuring the redundancy of each
feature while still acknowledging its relevance w.r.t. the target class. A final
challenge is to evaluate relevance and redundancy in mixed feature space. Nev-
ertheless, existing filter-based feature selection methods [?, ?, ?, ?] do not focus
on considering all three challenges together: relevance based on multi-feature
interactions, redundance and mixed data.

In this work, we propose a feature ranking framework (RaR) to address all
three challenges. We begin with computing relevance scores of multiple sub-
spaces. These subspace relevance scores are decomposed to evaluate the individ-
ual feature contributions. In order to include the multi-feature interactions, the
relevance of a feature is computed based on these individual contributions to
multiple subspace relevance scores. The relevance estimation is followed by the
redundance calculation. The relevance and redundancy scores are unified such
that the relevance of a feature is penalized based on its redundancy. The major
contributions of the paper are as follows:
(1) A feature relevance score, that considers the multi-feature interactions.
(2) A measure of redundancy to evaluate the novelty of a feature w.r.t. a subset.
(3) Experimental studies on both synthetic and real world datasets to show that
several state-of-the-art approaches underestimate the importance of such inter-
acting features.
Our extensive experiments show that our approach has better ranking quality
and lower run times in comparison to several existing approaches.



2 Related Work

Feature selection is an extensively researched topic and can be broadly classified
into filter, wrapper, hybrid, embedded and unsupervised approaches [?,?,?,?].
We compare the related work based on the four properties summarized in Ta-
ble 1.

Wrapper approaches with sequential forward selection (SFS) can handle re-
dundancy, but it is not capable of evaluating feature interactions. Using recursive
elimination addresses the problem of multi-feature interactions [?]. However, the
major problem of this paradigm is efficiency, as the selection always depends on
training the classifier several times.

To overcome this computational challenge, hybrid approaches were intro-
duced. A well-known hybrid approach, Mixed Feature Selection (MFS) [?] is
based on the decomposition of continuous feature space along the states of each
categorical feature. A hybrid approach presented in [?], addresses the problem of
inefficiency by building fewer classifier models. Hybrid paradigms are still inef-
ficient on high-dimensional datasets, as it involves training of classifier multiple
times. Hence, this work focuses on the filter-based paradigm which does not
require training of a classifier multiple times.

Correlation-based Filter Selection (CFS) is an advanced version of Pearson’s
correlation, that is capable of handling redundance among features [?]. Similarly,
the correlation measure mRmR [?] ranks the features based on relevance and
redundancy. Tree-based embedded techniques are also well-known techniques for
handling mixed data and redundancy [?]. However, CFS, mRmR and embedded
techniques do not address interactions amidst features.

Unlike the aforementioned methods, unsupervised subspace search techniques [?,
?] consider multi-feature interactions. However, these approaches focus on pro-
viding a score for the entire subspace. In contrast to this, we intend to rank
individual features by including their interactions with other features and the
target. Moreover, the above discussed subspace methods are incapable of re-
dundancy elimination. CMIM [?] and JMI [?] take relevance and redundancy for
feature evaluation. However, CMIM is limited to boolean features and both have
limitations for computing feature interactions between more than two features.

We propose a feature ranking framework RaR. RaR is an efficient filter-
based feature ranking framework for evaluating relevance based on multi-feature
interactions and redundancy on mixed datasets.

Table 1: Overview of the related work on feature selection
Paradigm Approach Mixed data Redundancy Feature interactions Efficiency

Wrapper SFS [?] 3 3 7 7

Recursive elimination [?] 3 3 3 7

Hybrid
MFS [?] 3 7 7 7

Doquire [?] 3 3 7 7
Subspace Ranking HiCs [?] 7 7 3 3

Embeddedd C4.5 [?] 3 3 7 3

Filter
mRmR [?] 3 3 7 3

CFS [?] 3 3 7 3
RaR 3 3 3 3



3 Problem Overview

In this section, we define the problem that we aim to solve. Let F be a d-
dimensional mixed dataset fj ∈ F | j = 1, · · · , d with N instances. As a su-
pervised learning process, the target Y is a collection of discrete classes. The
mixed feature space F is defined by a set X ⊆ F of continuous and set Z ⊆ F
of categorical features, i.e., F = X ∪Z . In the following, we denote error(S) as
the error function of the classifier, trained using a subset of features S ⊆ F . For
the given mixed dataset, we aim to (1) compute feature relevance by including
their interactions with other features, as well as (2) evaluate the redundance
score of each feature.

Evaluation of feature interactions requires a multivariate correlation mea-
sure, that quantifies the relevance of S to Y . Given such a subspace relevance
score rel : S 7→ R, rel is a function of individual feature relevancies, i.e.,
rel(S) = φ

(
{r(fj) | ∀fj ∈ S}

)
, where φ is an unknown function such that

φ : R|S | 7→ R. To infer the individual feature relevancies r : fj 7→ R, the first
challenge is to decompose the subspace scores into individual feature scores. How-
ever, individual feature relevance cannot be inferred from a single feature subset
because of possible interactions of fj in other subspaces. To include the multi-
feature interactions, it is necessary to evaluate M different subspaces. Thus, we
aim to deduce a valid relevance score of a feature r(fj), based on the contribution
of fj to M different subspace scores.

Additionally, we aim to estimate the redundance of information a feature has,
w.r.t a subspace, i.e., red : (fj ,S) 7→ R. Given a feature fi ∈ S , non-redundant
to S and fj ∈ S | i 6= j, with redundant information to S , we intend to quantify
a redundance score such that, red(fj ,S) > red(fi,S). Addition of redundant
feature information to a classifier does not contribute to the prediction quality,
i.e., error(S) ≈ error(S \ fj) [?]. A major challenge for filter-based feature
selection approaches is to evaluate this efficiently without training a classifier.
Finally, the features are ranked based on the unification of two scores.

4 Relevance and Redundancy Ranking (RaR)

RaR consists of three major steps, computing the feature relevance by includ-
ing feature interactions, redundancy and finally combining the two scores. To
evaluate the feature relevance in a mixed dataset by including the feature in-
teractions, we begin by computing the relevance (to the target class) scores of
multiple subsets. We aim to infer the feature relevance based on their contribu-
tion to various subspace scores. Thus, the relevance of a feature to the target is
decided based on its interaction with other features in multiple subspaces. This
requires a multivariate correlation measure that can quantify the relevance of
a subspace to the target. Hence, we begin with the introduction of a subspace
correlation measure that we employ. This section is followed by the introduction
of our heuristic to estimate the feature relevance based on multi-feature inter-
actions. Finally, we elaborate our redundancy estimation and unification of the
two scores.



4.1 Subspace relevance

In the following, we introduce the definition of subspace relevance and a method
to calculate it. To estimate the relevance of a subspace to the target, we use the
concept of conditional independence. For an uncorrelated subspace, the law of
statistical independence is not violated. The degree of violation is quantified by
measuring the difference between the conditional and marginal distributions [?,
?].

Definition 1. Subspace Relevance
Given a subspace S ⊆ F and a divergence function D, the subspace relevance

score rel(S) to the target Y is defined as:

rel(S) = D
(
p(Y | S) || p(Y)

)
.

For a set of discrete target classes Y , the marginal of the target is compared to
its conditional distribution. This definition enables the measuring of multivariate
and non-linear correlations [?] in mixed datasets. For fj ∈ X , the conditional is
estimated based on a slice of continuous instances drawn from fj . Similarly, for
a fj ∈ Z , the conditional is based on a slice of instances that have a particular
categorical state. The magnitude of divergence between these two distributions
can be estimated with Kullback–Leibler (KLD) or Jensen-Shannon divergence
functions [?]. However, the instantiation of divergence function D will be done
in the Section 4.5.

4.2 Decomposition For Feature Relevance Estimation

A simple solution to estimate the relevance of fj using Def 1 is by comput-
ing rel({fj}). Such individual feature relevance scores lacks information about
feature interactions. The aim of our approach is to evaluate feature relevance
r(fj) by including its interactions with other features and not to compute sub-
space scores rel(S). The subspace relevance score represents the contribution of
all features present in the subspace. Hence, the subspace score can be seen as
a function of individual feature relevancies. We estimate the feature relevance
r(fj) by decomposing the subspace score, which is the result of individual feature
relevancies.

Example 1. Assume a dataset F = {f1, f2, f3, f4}, such that there exists multi-
feature interactions between {f1, f2, f3}. Hence, relevance of a subset with all
interacting features (rel(S1) | S1 = {f1, f2, f3}) is greater than the relevance of
a subset (rel(S2) | S2 = {f1, f2, f4}) with an incomplete interactions.

A näıve decomposition is to decompose rel(S) as the sum of individual fea-
ture relevancies. On applying näıve decomposition to our example 1, we obtain
rel(S1) = r(f1) + r(f2) + r(f3) and rel(S2) = r(f1) + r(f2) + r(f4). With an
incomplete interaction structure, rel(S2) will underestimate the values of r(f1)
and r(f2). Such underestimations are misleading as there exists another subspace



where f1 and f2 in combination with f3 forms a complete interaction structure
to be more relevant to Y . This necessitates to rewrite the decomposition rule,
such that it holds true for both cases. Hence, we define the decomposition as an
upper bound of the subspace relevance.

Definition 2. Feature Constraint
Let r(fj) ∈ R be the relevance of individual features within the subspace S ⊆ F ,

we define the feature constraint as:

rel(S) ≤
∑
fj∈S

r(fj)

The defined inequality applies for a subspace with a complete or an incomplete
interaction structure. The relevance of a feature fj is to be estimated based on
multiple subspaces, i.e., S | S ∈ 2F and fj ∈ S . Hence, a single inequality is
not sufficient to estimate feature relevance based on multi-feature interactions.
Moreover, a single inequality does not enable us to compute the relevance of all
features fj ∈ F in the high-dimensional feature space. However, it is compu-
tationally not feasible to deduce constraints (c.f. Def 2) for all possible feature
combinations. We address this challenge by running M Monte Carlo iterations.
For each iteration, we select a subspace S and define a constraint based on the
subspace relevance rel(S) score and the features belonging to S . The constraints
provide information on how a feature interacts in multiple subspaces. From these
constraints, we aim to estimate the relevance of a feature r(fj).

Table 2 shows an illustrative example of how our idea of generating con-
straints works for a dataset (in example 1) with multi-feature interactions . Our
approach draws several random subspaces as shown in Table 2. With the calcu-

Table 2: Illustrative example of feature constraints for 3 Monte Carlo iterations

i S rel(S) Constraint
1 {f1, f2, f3} 0.9 r(f1) + r(f2) + r(f3) ≥ 0.9
2 {f1, f4} 0.12 r(f1) + r(f4) ≥ 0.12
3 {f2, f1, f4} 0.15 r(f1) + r(f2) + r(f4) ≥ 0.15

lated subspace relevancies, we build 3 constraints for estimating the bounds of
the individual feature relevance. The constraints of i = 2 and 3 underestimate
the relevance of the individual features. However, constraint of i = 1 increases
the boundaries of individual feature relevance. The relevance of a feature r(fj)
is decided by considering multiple subspaces where fj is a part of. Hence, our
approach prevents underestimation of r(f1) and r(f2) and enable inclusion of
multi-feature interactions.

Our approach generates M inequalities for M Monte Carlo iterations. Solving
the system of M inequalities does not lead to a unique value of r(fj). The
inequalities provide only the boundaries for feature relevancies. We aim to deduce
a reasonable estimate of the relevancies such that all constraints are satisfied.
As these constraints denote the lower bounds of the feature relevancies, we aim
to minimize the contributions of individual features. Therefore, we define an



objective function that estimates r(f) | f ∈ F subject to the defined constraints,

min
r(f)

∑
f∈F

r(f) +
∑
f∈F

(r(f)− µ)2

 s.t. rel(S i)≤
∑
f∈Si

r(f) | i = 1, · · · ,M, (1)

such that, µ = (1/ |F|)
∑
f∈F r(f). The first term denotes the sum of individual

feature relevance. The second part of the optimization function is a standard L2-
regularization term to ensure that all relevancies r(f) contribute equally to the
boundary. Finally, we apply quadratic programming in order to optimize Eq 1
subject to the M affine inequalities. The inequalities define a feasible region in
which the solution to the problem must be located for the constraints to be
satisfied. Thus, we obtain the relevance score for each feature. Computing the

Algorithm 1 Estimation of Feature Relevance

Input: F ,Y ,M, k
1: C = ∅
2: for i = 1→M do
3: Sample {S i | S i ⊆ F ∧ |Si| ≤ k}
4: Compute rel(S i) using Definition 1
5: Construct constraint (cf. Definition 2)
6: Add constraint to set C
7: end for
8: Optimize objective function Eq 1 subject to C
9: return r(f) | ∀f ∈ F

subspace relevance (c.f. Def 1) for each iteration requires the estimation of con-
ditional probability distributions. However, evaluating the empirical conditional
probabilities for large |S | is inaccurate. We demonstrate this by empirical eval-
uation in Section 5.3. Hence, it is necessary to restrict the size of the subspace
to a maximum of k. That is, each randomly drawn S i | S i ⊆ F and |S i| ≤ k.
Algorithm 1 shows the pseudo-code for feature relevance estimation.

4.3 Redundancy Estimation

The feature relevance estimation does not include the effect of redundancy. This
means, two identical features are ranked the same based on its relevance scores.
A major challenge lies in the detection of redundant features which do not have
identical values as explained in Section 3. Hence, redundancy is not a binary
decision. A pair of redundant features can only have a certain magnitude of in-
formation shared among them. Therefore, it is necessary to incorporate this spe-
cific information into the final score that exemplifies redundancy and relevance.
The principle of redundancy estimation is similar to the relevance measurement.
We use the same property of comparing marginal and conditional distributions
as in Definition 1 to evaluate redundancy.

Definition 3. Feature Redundancy
Given a set of features R ⊆ F , a feature fj | (fj ∈ F and fj /∈ R) is non-

redundant w.r.t R iff:

P
(
p(fj | R) = p(fj)

)
= 1.



Our feature redundancy estimation is a two step process. Step 1: All features fj ∈
F are ranked based on relevance r(fj) score. Step 2: For an ordered set Rn that
denotes a set of features until relevance rank n, we compute redundancy score of
nth ranked feature based on the redundancy it imposes on features with relevance
rank 1 to n− 1. By following this methodology, if two redundant features have
similar relevance scores, the second feature will obtain a higher redundancy
score. This redundancy score is used to devalue the redundant contribution of
that feature.

red(fj ,R) ≡ D
(
p(fj | R) || p(fj)

)
(2)

If fj is independent of R, the marginal and the conditional probability distri-
butions will be the same. In other words, if fj has non-redundant information
w.r.t the features f ∈ R, the deviation between the distributions in Eq 2 will be
0. We illustrate the steps with an example.

Example 2. Assume a feature space F = {f1, f2, . . . , f5} in which f1 and f3 are
redundant features.

For the given feature space in example 2, the features are sorted based on rel-
evance scores following the step 1, i.e., Rn = {f5, f3, f1, f2, f4} | n = |F|. The
highest relevant feature f5 is not evaluated for redundancy as, it has no preced-
ing ranked features to be redundant with. The redundancy that f3 imposes on
R1 = {f5} is estimated by applying Eq 2. Therefore, we rank the features based
on their relevance and use the top n-relevant features to compute the redun-
dancy of fn+1. The pseudo-code for this estimation is shown in Algorithm 2.

Algorithm 2 Estimation of Redundancy

Input: F ,Y
1: Rn=Sort ∀fj ∈ F based on r(fj) from Algorithm 1
2: for n = 2→ |F| do
3: Compute red(Rn4Rn−1,Rn−1) c.f. Eq 2 . 4 dentotes symmetric difference
4: end for
5: return Calculate redundancy scores red ∀fj ∈ F

For estimation of feature relevance, we restricted the subspace size to k (c.f.
Section 4.2). This avoids inaccurate conditional probability estimates. Alg 2 also
involves estimation of conditional probabilities. For a large |Rn|, the conditional
probability estimations using Eq 2 are not accurate. For example: for estimating
the redundancy of the 100th ranked feature, we need to estimate the conditional
based on the 99 features ahead in the rank. Thus, for estimation of redundancy
score of the nth ranked feature, we sample subspaces ∀s ⊆ Rn−1. From Rn−1,
various subspaces s of size k are sampled without replacement, i.e.,

(
n−1
k

)
number

of subsets. The maximal imposed redundancy of the nth ranked feature on the
list of subspaces is the redundancy of the nth feature.



4.4 RaR: Relevance and Redundancy scoring

Having estimated the relevance and redundance of the features in Section 4.2
and 4.3, our final goal is to rank features based on a single score that combines
both the properties.

Definition 4. RaR score
Given the relevance r(fj) and redundancy score red(fj ,R) of feature fj, we
define RaR(fj) score as,

RaR(fj) =

[
2 · r(fj) · (1− red(fj ,R))

r(fj) + (1− red(fj ,R))

]
.

RaR(fj) is the harmonic mean of relevance and redundancy scores. The har-
monic mean penalizes the relevance score with the information based on redun-
dancy.

Example 3. Assume a feature space F = {f1, f2, . . . , f5} in which f1 and f3 are
relevant and exhibit feature interactions. Additionally, f4 and f5 are features
with redundant information.

In such a case, RaR ranks the feature based on multi-feature interactions and
redundancy. Hence, RaR ensures that the non-redundant and the features with
interactions, i.e., {f1, f3} to be present ahead in the feature ranks.

Time complexity analysis of RaR consists of three major phases: subspace
sampling for constraint generation (Lines 2- 7 of Alg 1), quadratic optimization
(Line 8 of Alg 1) and redundancy estimation (Alg 2). In the following, we discuss
the time complexity of each part and finally present the overall time complexity
of our approach.

For each Monte Carlo iteration, we compute the subspace relevance based
on the slicing method presented in [?]. This requires to iterate the instances in
the selected slice. In the worst case scenario, all instances are included in the
slice with a time complexity of O (N). The selection of a slice is done for each
dimension in subspace Si. Since |Si| ≤ k, it leads to a complexity of O (N · k) for
calculating rel(Si) (Line 4 of Alg 1). The total time complexity for extracting
M constraints takes O (M ·N · k). The final step of estimating the relevance of
each feature, requires to optimize Eq 1 subject to M constraints (Line 8).

A quadratic programming algorithm with M constraints and d-dimensional
feature space has a time complexity O(M +

√
d · ln 1

ε ) [?]. The complexity con-
siders that the optimizer converges to an ε-accurate solution. To compute the
redundancy of a feature, we group subspaces of size k with all features ahead of
it and compute the maximal redundancy using Eq 2. Thus redundancy takes a
total time of O

(
d · d−1k ·N

)
. Finally, ranking the features requires to sort the

features based on their relevance and redundancy scores. This procedure requires
O(d·log(d)). Considering the complexity of computing the harmonic mean of rel-
evance and redundancy as constant, the total complexity of RaR is represented
as,

O
(
M ·N · k +

d2

k
·N
)
.



4.5 Instantiations for RaR

In Alg 1, a random subspace S is selected with maximum dimensionality k for
each iteration. In order to estimate rel(S), we compute the distribution of Y
under some conditional slice of S . That is, we aim to obtain a slice of S which
satisfies a specific set of conditions, i.e., D(p(Y | S ∈ [c1, · · · , c|S |]), p(Y )).
Defining explicit conditions is a tedious task. Hence, we use adaptive subspace
slicing, more details can be found in [?]. After calculating the subspace relevance,
we extract an inequality and the set C is updated with this constraint. Finally,
we obtain a set of M constraints and optimize the objective function of Eq 1
subject to these constraints.

RaR requires a divergence function to quantify the difference between dis-
tributions. We use KLD for our experiments. As KLD is formulated for both
continuous and discrete probability distribution, it is directly applicable for re-
dundancy estimation (c.f. Def 2) on mixed feature types. As a non-symmetric
measure, we instantiate RaR with KLD

(
p(Y | S) || p(Y )

)
as it converges to

mutual information and KLD
(
p(Y ) || p(Y | S)

)
does not 2.

5 Experiments

5.1 Experimental Setup

In this section we compare the run times and quality of our approach against
several existing techniques as competitors. We consider techniques from differ-
ent paradigms, i.e., filters, wrappers, embedded and hybrid techniques for mixed
data as competitors. As wrappers, we test Sequential Forward Selection (SFS) [?]
with K-Nearest Neighbors (KNN) [?], capable of handling redundant features. As
hybrid technique, we consider the heuristic of Doquire [?]. The scheme requires a
correlation measure and a classifier, hence we employ mRmR [?] and KNN with
the heuristic of Doquire [?]. As filter approach, we test Maximal Information
Coefficient (MIC) [?], mRmR [?,?], ReliefF [?] and Correlation Filter Selection
(CFS) [?]. Finally, we test the embedded scheme of decision trees (C4.5 [?]). We
provide the implementation of RaR, competitor approaches, synthetic data gen-
erator 1 and the parameters 2 of our experiments. The results of our experiments
on other classifiers are also made available. Additionally, we employ Gurobi [?]
optimizer for the optimization of relevancies in RaR. We evaluate and compare
our approach with the above mentioned competitors on synthetic and real world
datasets.

Synthetic datasets were generated with varying database sizes and dimension-
ality. We employ the synthetic data generation program of NIPS [?] to generate
continuous feature sets with normal distribution in any proportion of relevant
(with multi-feature interactions) and noisy features. For a generated continuous
feature f and v number of states, we discretized f to form a categorical feature
of v unique values. In our experiments, we generated mixed datasets with equal

1 https://github.com/tmbo/rar-mfs
2 https://hpi.de//mueller/rar.html

https://github.com/tmbo/rar-mfs
https://hpi.de//mueller/rar.html


number of categorical and continuous features. As a measure of feature ranking
quality, we use Cumulative Gain (CG) from Information Retrieval [?].

For evaluation of our feature ranking framework, we also use 6 public datasets
from the UCI repository with different dimensionalities and database sizes. The
datasets contain both continuous and categorical features. The NIPS feature
selection challenge [?] (2000 Instances/500 features), Ionosphere [?] (351 In-
stances/24 features), Musk2 [?] (6598 Instances/166 features), Isolet [?] (2000
Instances/500 features), Semeion [?] (1593 Instances/164 features) and Adver-
tisement [?] (3279 Instances/1558 features) datasets. Experiments that had run
times more that one day are denoted as ** in Table 3 and 4.

5.2 Synthetic Data

We perform scalability analysis by evaluating the run times with increasing di-
mensionality and database size. Fig 1 shows the efficiency of RaR with increasing
database size and dimensionality. In general, methods that do not evaluate for
feature interactions, i.e., C4.5, mRmR and CFS, have lower run times than RaR.
By evaluating these interactions, RaR has better feature ranking quality (c.f.
Fig 2). In comparison to ReliefF, which ranks features based on multi-feature
interactions, RaR has lower run times and better feature ranking quality.
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Fig. 1: Run time Evaluation: Run times of RaR vs. competitor approaches

5.3 Parameter Analysis

The k parameter of RaR decides the maximum size of the subset drawn for
every iteration i | i = 1, · · · ,M . From our experiments (c.f. Fig 3(a)) on syn-
thetic data, we observe that the CG decreases with increasing k. The size of
the conditional slices is determined by the α parameter [?]. For a dataset of
N = 1000 and | F |= 100, setting α = 0.1 and a large value of k (k = 50)

leads to a conditional slice of size α
1
k · N [?]. Hence, the conditional slice has

approximately 95% of all the instances. This leads to a very similar conditional
and marginal distributions and distorted feature ranking. In Fig 3(b), we vary
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M and evaluate its influence on feature ranking. The experiment shows that
the ranking quality is stable for a large range of M . Thus, we recommend to
restrict k to small values and increase M for better accuracy. Choosing large M
affects run times of selection process. However, the task of sampling and build-
ing constraints can be distributed over multiple processor threads. Fig 4 shows
the efficiency gained by distributed computations of RaR. Speedup denotes the
number of folds of decrease in run times (w.r.t single thread) on distributing the
Monte Carlo iterations to multiple processor threads.
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Fig. 3: Parameter Study, on synthetic dataset of 50 features and 20000 instances

5.4 Robustness w.r.t. erroneous labels

In several application scenarios, the target labels Y are assigned by domain
experts. This manual process is prone to errors. With such datasets, it is nec-
essary to ensure that the feature ranking is robust to erroneous target labels.
To test this, we manually induced label errors in the synthetic datasets. The
hybrid approach from Doquire [?] was able to perform well on a few cases (c.f.
Fig 5). However, as a filter approach, RaR defines the feature relevance score
based on constraints defined by multiple subsets. Thus, RaR is more robust to
label errors.
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Fig. 5: Robustness of feature ranking

5.5 Real World Datasets

Table 3 shows the results w.r.t. the prediction quality of each feature selection
technique. Overall, we observe that application of feature selection improves the
quality of prediction. By evaluating the feature interactions in the dataset, RaR
has the best accuracy in comparison to the competitor approaches. Especially,
the existing feature selection techniques do not show improvement of f-score
in the case of NIPS challenge dataset. NIPS dataset contains multi-feature in-
teractions, noisy and large number of redundant features. As the competitor
approaches do not evaluate feature interactions, they assign lower scores to such
interacting features.

Table 4 shows that our approach is several times more efficient in comparison
to the competitor filter and wrapper methods. Embedded approach C4.5 has
lower run times in comparison to RaR. However, C4.5 is unable to identify
feature interactions and has lower prediction quality (c.f. Table 3). Similar to
our experiments on synthetic datasets (c.f. Fig 1 and 2), we observe that methods
that have lower run times than RaR have lower f-scores as they no not evaluate
feature interactions. For dataset with few features (Ionosphere data), simple
bivariate correlation measures (MIC and CFS) was a better choice w.r.t run
times.

Table 3: Average f-score of 3 fold cross-validation using KNN (K=20) classifier

Selection NIPS Ionosphere Musk2 Isolet Semeion Advertisement
Full-dimension 0.57 0.70 0.8 0.58 0.1 0.73

C4.5 0.58 0.87 0.9 0.63 0.79 0.9
MIC 0.78 0.83 0.86 0.78 0.8 0.91

SFS(KNN) 0.84 0.85 0.91 ** ** **
CFS 0.82 0.81 0.86 0.82 0.9 0.91

ReliefF 0.87 0.79 0.84 0.82 0.87 0.87
mRmR 0.55 0.89 0.9 0.57 0.9 0.9
Doquire 0.56 0.88 0.9 0.56 0.93 0.9

RaR 0.88±0.006 0.88±0.00 0.91±0.008 0.87±0.002 0.92±0.005 0.92±0.005



Table 4: Feature ranking run times in sec of RaR vs. competitor approaches

Selection NIPS Ionosphere Musk2 Isolet Semeion Advertisement
C4.5 1.2 0.5 3.1 3.8 0.21 15.58
MIC 37.7 0.47 40.79 37.25 81.2 49.35

SFS(KNN) 105741.3 6.9 14132.9 ** ** **
CFS 36.7 1.8 8.3 37.5 2.51 417.9

ReliefF 29.3 0.18 98.08 32.7 5.46 95.07
mRmR 42.3 0.5 4.5 59.27 6.1 78.81
Doquire 44.6 4.25 9.19 62.15 9.8 131.42

RaR 10.35 2.05 5.3 7.9 4.37 50.26

5.6 Evaluation of the ranking

To evaluate the quality of feature ranking, i.e., to experimentally show that
the top ranked features of RaR are maximally relevant and non-redundant, we
follow a 2 step evaluation process on real world datasets. First, we rank the
features using each approach. Then, we iteratively add the features ranked by
each technique to a classifier (KNN [?]) in the order (best to worst) of their ranks.
As shown in Fig 6, after including each feature, the average f-score of 3 fold cross-
validation is calculated. As the top ranked features of RaR are non-redundant,
we observe the best quality with the least number of features. However, other
approaches do not take into account the effect of redundancy. For example,
ReliefF has very similar prediction quality (c.f. Table 3) to RaR. By ranking the
non-redundant features ahead, RaR achieves better f-score with fewer features
(c.f. Fig 6), i.e., RaR obtains an f-score of 0.87 with 14 features and ReliefF
obtains an f-score of 0.82 with 20 features. We performed the experiment on the
public datasets and we show the number of features (c.f. Table 5) at which the
maximum f-score (c.f. Table 3) was observed. Table 5 shows the number of top
ranked features required to obtain the quality in Table 3, and RaR achieves the
best f-score with fewer features.
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Table 5: Number of features required to obtain the quality in Table 3

Selection NIPS Ionosphere Musk2 Isolet Semeion Advertisement
MIC 11 2 163 11 82 14

SFS(KNN) 5 2 135 ** ** **
CFS 15 2 155 15 119 7

ReliefF 20 4 136 20 173 54
mRmR 5 5 117 2 151 13
Doquire 2 4 117 2 156 15

RaR 12 2 16 11 17 9

6 Conclusions and Future works

The results of various state-of-the-art algorithms on the synthetic and real world
datasets, show that our feature ranking method is suitable for high-dimensional
datasets exhibiting complex feature interactions. By ranking the non-redundant
features ahead, RaR achieves better prediction quality with fewer features.

As future works, we intend to address two directions to enhance our ap-
proach. In the event where two features are exactly identical to each other and
are also maximally relevant, after penalization for redundancy, one of the feature
can have a RaR score lower than the noisy features. This calls for a more sophis-
tication in the combining of relevance and redundancy scores. RaR is based on
the distribution of target class. Hence, RaR is currently limited to non-sparse
datasets.
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