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Abstract. Autoencoders are an essential concept in unsupervised learn-
ing. Currently, the quality of autoencoders is assessed either internally
(e.g. based on mean square error) or externally (e.g. by classification
performance). Yet, there is no possibility to prove that autoencoders gen-
eralize beyond the finite training data, and hence, they are not reliable for
safety-critical applications that require formal guarantees also for unseen
data.
To address this issue, we propose the first framework to bound the
worst-case error of an autoencoder within a safety-critical region of an
infinite value domain, as well as the definition of unsupervised adversarial
examples that cause such worst-case errors. Technically, our framework
reduces the infinite search space for a uniform error bound to checking
satisfiability of logical formulas in Linear Real Arithmetic. This allows us
to leverage highly-optimized SMT solvers, a strategy that is very successful
in the context of deductive software verification. We demonstrate our
ability to find unsupervised adversarial examples as well as formal quality
guarantees both on synthetic and real-world data.

1 Introduction

Autoencoders are widely used for many unsupervised learning tasks such as
cluster analysis [4], compression [14], anomaly detection [18], as well as a variety
of pre-processing steps [10, 14, 17] in other machine learning pipelines. The general
assumption is that data can be compressed into a lower dimensional latent space
by an encoder function extracting the most relevant features of the data distribu-
tion. From this latent representation the decoder tries to reconstruct the original
input. As the latent representation is an information bottleneck the autoencoders
input deviates from its output. Typically the autoencoder reconstructs better in
dense regions (i.e. regions with many training examples) than in regions with
few training examples [18] giving rise to its application in anomaly detection.
Moreover even the small errors in dense regions are a desirable property as they
allow it to be used e.g. for denoising. At the same time it is necessary to control
the error for all points in dense regions because otherwise the result - whether
it is the latent representation or the reconstruction - is less useful. To this end
current approaches to assess autoencoders either measure internally the mean
square error (MSE) on the unsupervised training data or external performance
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on some supervised application such as classification performance.
However, a major shortcoming of these approaches is that they cannot provide a
formal guarantee in terms of the maximum deviation between input and output
of the autoencoder as it is evaluated on training data only (i.e. with a finite
number of inputs). We are not aware of any existing scheme to calculate the
largest error of an autoencoder in an infinite input space. This lack of formal
quality guarantees for autoencoders leads to a very limited applicability of such
unsupervised learning schemes for safety-critical applications. For instance, it is
particularly important to consider the maximum deviation when working with
data containing clusters. In such situations the autoencoder should not mix up
the clusters because otherwise the autoencoders results are meaningless. If the
maximum deviation for the respective clusters are small enough though, the
autoencoder is guaranteed to keep the clusters separated.
To address this and other shortcomings of unsupervised learning with autoen-
coders, we provide the first methodology to bound an autoencoder’s worst-case
error in a safety-critical region. As a first step towards this goal we define the
notion of unsupervised adversarial examples which are inputs (not necessarily
contained in the training data) on which the autoencoder’s error exceeds a user-
defined threshold. Then we define the worst-case error of an autoencoder as the
largest error that can possibly manifest. Since we cannot expect to find a global
maximum of the error (as there is no reason for the error itself to be bounded),
we restrict our search to user-defined regions with an infinite value domain of
the input space. We leave this region as a parameter to be provided by the user
as it clearly depends on knowledge about the use case at hand, characteristics of
the training data, or other domain-specific information.
Following a popular approach in the area of software verification, we reduce the
problem of finding an unsupervised adversarial example to a satisfiability check
of a formula in Real Arithmetic. This allows us to apply highly-optimized, off-
the-shelf satisfiability modulo theory (SMT) solvers which can effectively reason
about the infinite domains and, hence, can prove the existence or non-existence
of unsupervised adversarial examples. Once we have found an unsupervised
adversarial example, it serves as a lower bound for the worst-case error. Moreover,
a simple binary search allows us to approximate worst-case error arbitrarily well.
Note that naive approaches, such as sampling, cannot provide an upper bound
on the worst-case error of an autoencoder as an exhaustive search of the input
space is intractable. Moreover, our experimental evaluation shows that sampling
often underestimates that worst-case error.
We demonstrate the effectiveness of our QUGA (QUality Guarantees for Autoen-
coders) approach and evaluate our quality guarantees for unsupervised learning
on a synthetically created dataset as well as on a real dataset. In both cases we
can find unsupervised adversarial examples as well as formal quality guarantees
by lower and upper error bounds in safety-critical regions.
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2 Related Work

Adversarials in Supervised vs. Unsupervised Learning. In the area of su-
pervised learning, adversarial attacks have been widely studied [11, 7, 20]. While
common definitions of adversarial attacks rely on the robust separation of class
labels, we aim at unsupervised learning without given labels. Therefore super-
vised definitions do not cover the unsupervised learning case. Similarly existing
approaches of adversarial attacks in unsupervised learning focus on a particular
task such as clustering [6] or image retrieval [22] assuming that there is a notion
of a wrong output. In contrast to these approaches we define adversarial attacks
directly in terms of the intrinsic learning objective of autoencoders which is - as
reflected by the loss function - approximating the identity function.
Empirical Quality Assessment vs. Formal Guarantees. Common evalua-
tion schemes for autoencoders do an empirical quality assessment based on a
given set of training data. The variety of quality measures ranges from simple av-
erage MSE to stability and robustness measures [13, 21, 15]. All of these measures
have in common that they rely on the given training data. In contrast to such
empirical evaluation, many safety-critical applications require formal guarantees
explicitly also on unseen data. We propose such formal guarantees for trained
autoencoders. Given a safety-critical data region, our method is able to either
find an adversarial example or prove that such an example does not exist.
External vs. Internal Evaluation. Common external evaluation uses, for
example, the classification quality of a down-stream step after the autoencoder
as indirect measure of quality for the autoencoder. As such evaluation of multi-
ple tasks is prone to the mix-up of fluctuating quality of individual tasks and
dependency effects between these tasks. We belief that the modular evaluation
of individual tasks is an additional requirement for safety-critical systems. Such
a design-by-contract has been successfully established in modular software veri-
fication [3]. Similarly, we propose the first formal guarantee of an autoencoder
(i.e., an upper bound on the maximal error on the entire data domain).
Verification of Neural Networks. Our work is related to formal methods and
verification of neural networks in general (e.g., see [2, 12]). However, most of the
research in this area focuses on the problem of finding adversarial examples in
supervised learning tasks and lacks formal insights for unsupervised learning.
In contrast, our algorithm searches for unsupervised adversarial examples. It
does so by reducing the problem to a series of satisfiability checks in a Real
Arithmetic and applies a highly-optimized Satisfiability Module Theories (SMT)
solver as computational back-end to perform these checks. We have implemented
a prototype of our algorithm on top of the Z3 SMT solver [16] which provides a
convenient API and is one of the most popular tool in the domain of software
verification. For extremely large, real-world scenarios, however, one would clearly
use a solver that is optimized for constraints arising from feed-forward networks,
such as ReluPlex [12] or Planet [8].

Apart from constraint solving, other techniques from the area of deductive
software verification have been used for finding adversarial examples in supervised
learning and proving robustness properties of feed-forward neural nets. The per-
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haps most popular approach is abstract interpretation [9, 19]. However, abstract
interpretation inherently overapproximates the behavior of the neural network
and, hence, can only be used to prove safety properties. However, neither our
unsupervised adversarial examples nor our worst-case error of an autoencoder
can be achieved by their safety properties.

3 QUGA: Problem Statement

In general, an autoencoder tries to reproduce its input while propagating it
through a latent space which typically has less dimensions than the input/output
space. This latent space serves as an information bottleneck and, hence, introduces
errors to the identity function the autoencoder is supposed to learn. However,
most applications of autoencoders rely on a good approximation of the identity
function, and we are naturally interested in quantifying its error. More precisely,
our goal is to give formal guarantees in terms of the maximum deviation from
the identity function.

As a first step towards this goal, we define the notion of adversarial examples
of autoencoders. Intuitively, such adversarial examples are inputs on which the
“distance” between the input and the output of the autoencoder is larger than a
(user-defined) threshold ε > 0. Given the lack of definitions for adversarials in
unsupervised learning (and in particular for autoencoders), we define adversarial
example based on an abstract distance function dist which maps two data points
to a non-negative real number. However, we stress that the exact distance function
is not important for our definition (e.g., any Lp-norm could be used) because all
autoencoders share the goal of reconstructing the input.

Definition 1 (ε-adversarial examples). Let f : Rn → Rn be an autoencoder,
dist : Rn × Rn → R+ a distance function, and ε > 0. An ε-adversarial example
is a point x ∈ Rn such that

dist(x, f(x)) > ε

(i.e., a point on which the input and output of f deviate more than ε).

Note that our definition of ε-adversarial examples is not restricted to inputs in
the training or test sets but allows any input x ∈ Rn. This property makes finding
ε-adversarial examples a very challenging task, and in contrast to traditional
internal evaluation (e.g., mean square error) on training data, searching adversarial
examples is a computationally hard problem.

In the context of safety-critical systems, however, it is not enough to identify
individual ε-adversarial examples, but it is necessary to know the worst-case (i.e.,
maximum) error an autoencoder produces. Of course, we cannot expect to find
a global maximum of the error as there is no reason for the error itself to be
bounded. Therefore, we restrict the region for which we want to find a bound
on the error. This region depends on knowledge about the use case at hand,
characteristics of the training data, or other domain-specific information. Thus,
we leave it as a parameter to be provided by the user.
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Definition 2 (Worst-case error of autoencoders). Let f : Rn → Rn be an
autoencoder, dist : Rn × Rn → R+ a distance function, and A ⊆ Rn an (infinite)
safety-critical region of inputs. Then, the worst-case error of f in A is defined as

wce(f,A) = sup
{

dist
(
x, f(x)

)
∈ R+ | x ∈ A

}
(i.e., the largest deviation of an input in the region A from the output).

Definition 2 serves as our novel quality criterion for autoencoders that reflects
how good the identity function is learned in the specific region of interest. Our
wce-definition is inspired by many areas of reliable system design, including soft-
and hardware verification, as wce(f,A) guarantees that a system f employed in
a safety-critical region A stays within its design parameters. Furthermore, our
notion of wce overcomes limitations of classical quality metrics that are defined
on finite training data only. We actively design wce for typically infinite data
domains of safety-critical regions. In total, this leads us to the main problem
statement, which we call QUGA: QUality Guarantees for Autoencoders.

Problem 1 (QUGA: Quality Guarantees for Autoencoders). Given an autoencoder
f : Rn → Rn, a distance function dist : Rn × Rn → R+, and a region A ⊆ Rn,
compute wce(f,A).

In general, computing the worst-case error is a very challenging problem as it
involves reasoning about an infinite number of inputs (not just training data)
and does not make any assumption on the autoencoder, the distance function or
the region. In the following section, we consider a restricted version of Problem 1
and show how a reduction to a series of constraint solving can be used to answer
this restriction.

4 Solution Framework

In this section, we provide a framework for computing ε-adversarial examples and
the worst-case error of autoencoders. To make these problems computationally
tractable, we consider a restricted version of Problem 1. The following restrictions
are designed in such a way that the solution framework remains applicable to a
wide range of autoencoders used in practice:

1. We assume the the neurons of the autoencoder have linear or ReLU (Rectified
Linear Units) activation functions.

2. We assume the distance function to be the L1 or L∞-norm.
3. We assume the safety-critical region A to be a finite union of convex compact

polytopes (i.e. each polytope is an intersection of half-spaces of the Rn).
4. We approximate the worst-case error up to a user-defined accuracy because

our framework can find ε-adversarial examples for fixed ε only.

In the remainder of this section, we formally introduce autoencoders (Sec-
tion 4.1) and the Satisfiability Modulo Theories (SMT) framework (Section 4.2).
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In Section 4.2, we then show how the existence of an ε-adversarial example
can be phrased as a satisfiability problem in Linear Real Arithmetic, one of the
theories supported by the SMT framework. This allows us to use highly-optimized
SMT solvers to do a symbolic search on the (potentially infinite) input space. In
Section 4.4, we finally provide an effective method to approximate the worst-case
error of an autoencoder by repeatedly solving the easier problem of determining
the existence of ε-adversarial attacks for different values of ε.

4.1 Autoencoders

Intuitively, an autoencoder—like most feed-forward networks—is a collection of
neurons (or nodes) arranged sequentially in layers. Each neuron (except input
neurons) is connected to neurons of the previous layer by edges carrying weights
(e.g., see Figure 1 on Page 9). Functionally, an autoencoder evaluates a function
f : Rn → Rn, where internally it uses the neurons to propagate information
through its layers.
For an autoencoder f , we use N to denote the number of layers and lk ∈ N \ {0}
with k ∈ {1, . . . , N} to represent the number of neurons in Layer k. Layer 1 is
called input layer, Layer N is called output layer, and the remaining layers are
called hidden layers. The topology of an autoencoder is a tuple (l1, l2, . . . , lN )
denoting the number lk ∈ N \ {0} of neurons in each layer k ∈ {1, . . . , N}. In
contrast to general feed-forward networks, autoencoders have an equal number
n ∈ N \ {0} of neurons in the input and output layers (i.e., l1 = lN = n).
Furthermore there is a special layer that separates the autoencoder into the
encoder and the decoder. The neurons in this layer span the latent space which
typically has less dimensions than the input space.
For each layer k ∈ {2, . . . , N}, the autoencoder has a weight matrix W k of
dimension lk−1× lk, containing the weights of the connections between layer k−1
and k. Moreover, each layer has a so-called bias vector bk ∈ Rlk associated with
it that contains the bias for each neuron in Layer k.
The output of each neuron is calculated by taking a linear combination of the
output of the previous layer and then applying an activation function (typically
a non-linear function) on the result. We consider the linear (trivial) and the
ReLU activation function, giving rise to linear and ReLU neurons. The output of

Neuron j in Layer k is then xk,j =
∑lk−1

i=1 xk−1,iW
k
i,j + bkj if it is a linear neuron

and xk,j = max {0,
∑lk−1

i=1 xk−1,iW
k
i,j + bkj } if it is a ReLU neuron.

4.2 Satisfiability Modulo Theories (SMT)

Various problems in computer science, especially in the area of formal verification,
can be solved by reducing them to constraint satisfaction problems in a suitable
logic. Although propositional logic is a popular choice for many such problems,
some of them require a more expressive logic: first-order logic. A formula in first-
order logic is formed using constants, variables, function and predicate symbols,
logical connectives, and quantifiers. In this paper, however, we require only a
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specific first-order logic, namely the the quantifier-free fragment of linear real
arithmetic (LRA), which we introduce next.
First, let X = {x0, x1, . . .} be a set of variables which range over values in R.
Then, we define terms as follows: a term is either a constant c ∈ R, a variable
x ∈ X , or a function application t1 ◦ t2, where ◦ ∈ {+, ·} and t1, t2 are two terms.
For instance, 5, x, and 3 · x+ 2 · y are terms. To reflect the usual notation, we
often drop the multiplication sign.
An atomic formula is a predicate symbol applied to terms. In LRA, we allow the
usual binary predicates <, ≤, =, ≥, and >. For example, 3x+2y > 5 is an atomic
formula. Moreover, a formula is inductively defined as follows: a formula is either
an atomic formula, the negation ¬ϕ of a formula ϕ, or the disjunction ϕ1 ∨ϕ2 of
two formulas ϕ1, ϕ2. We also add syntactic sugar and allow the formulas ϕ1 ∧ϕ2,
ϕ1 → ϕ2, and ϕ1 ↔ ϕ2, which are defined as usual.
To assign meaning to formulas, we introduce the concept of interpretations. An
interpretation is a mapping I : X → R which assigns to each variable a real value.
Interpretations can easily be lifted to terms in the usual way, and we write I(t)
for the interpretation (i.e., the value) of the term t under I. Finally, we can
define when an interpretation I satisfies a formula ϕ which we denote by I |= ϕ:
we have I |= t1 � t2 for � ∈ {<,≤,=,≥, >} if and only if I(t1) � I(t2) is true,
I |= ¬ϕ if I 6|= ϕ, and I |= ϕ1 ∨ϕ2 if and only if I |= ϕ1 or I |= ϕ2. We say that
a formula ϕ is satisfiable if an interpretation I with I |= ϕ exists.

Highly-optimized procedures for deciding satisfiability of formulas in LRA
have been implemented in a framework called Satisfiability Modulo Theories
(SMT) [1], which not only allows to check the satisfiability of formulas in LRA
but also in many other (usually quantifier-free) fragments of first-order logic,
called theories. Moreover, SMT solvers typically return an interpretation if the
given formula is satisfiable. In the following, we exploit this property for our
search for ε-adversarial attacks and to approximate the worst-case error of an
autoencoder.

4.3 Identifying ε-Adversarial Examples

Let us now describe how to translate the problem of finding an ε-adversarial
example of an autoencoder f into LRA. At its core is a formula ϕf that encodes
the function computed by f in LRA. Moreover we add further constraints in the
form of formulas ϕA and ϕdist

ε which encode the input region A and the distance
function (including the existence of an ε-adversarial example), respectively. The
resulting encoding is then the conjunction ϕae

ε := ϕf ∧ ϕA ∧ ϕdist
ε which is

satisfiable if and only if an ε-adversarial example exists. Moreover, a satisfying
interpretation of ϕae

ε carries sufficient information to extract such an ε-adversarial
example. Let us now describe these formulas in detail.

Encoding the Autoencoder: To encode the function computed by an autoen-
coder f in LRA, we introduce variables xk,j for each layer k ∈ {1, . . . , N} and
each neuron j ∈ {1, . . . , lk} in Layer k. Intuitively, each such variable captures the
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output of a neuron and is used as the input for other neurons. Correspondingly,
variables x1,1, . . . , x1,l1 represent the input to the autoencoder, while variables
xN,1, . . . , xN,lN represents the output of the autoencoder. To ensure that the
variables xk,j actually have the desired meaning, we introduce constraints that
describe the computation of each neuron. For a linear neuron we construct

ψk,j :=
[
xk,j =

[ lk−1∑
i=1

W k
i,jxk−1,i

]
+ bkj

]
.

On the other hand, for a ReLU neuron, we construct the constraint

ψk,j :=
[[
Sk,j =

lk−1∑
i=1

W k
i,jxk−1,i + bki

]
∧
[
xk,j = ite(Sk,j < 0, 0, Sk,j)

]]
,

where ite (short for “if-then-else”) is syntactic sugar for a conditional evaluation
of terms, which is supported by virtually all SMT solvers.
Finally, we define

ϕf :=
∧

2≤k≤N

∧
1≤j≤lk

ψk,j ,

which collects the constraints for all individual neurons. By construction ϕf

completely encodes the autoencoder f in the sense that f
(
I(x1,1), . . . , I(x1,l1)

)
=(

I(xN,1), . . . , I(xN,lN )
)

holds for all satisfying interpretations I |= ϕf .

Encoding the Region: Recall that we assume that the safety-critical region
A in which to search for ε-adversarial examples is provided as a finite union of
compact convex polytopes. Formally, a convex polytope P is the finite intersection
of half-spaces Hi of the form

∑l1
j=1 ai,jxj ≤ ci for ai,j , ci ∈ R, and we write

A = {P1, . . . ,P`} for the sake of brevity. Thus, restricting the search space for
ε-adversarial examples to a convex polytope P consisting of m half-spaces can
simply be achieved by the formula

ψP :=
∧

1≤i≤m

[ ∑
1≤j≤l1

ai,jx1,j ≤ ci
]
.

Moreover, the final formula is then the disjunction ϕA :=
∨
P∈A ψP for all

polytopes P constituting to the given region A.

Encoding the Existence of an ε-Adversarial Attack: It is left to encode
the distance function dist as well as the existence of an ε-adversarial example.
In the interest of space, however, we only show the encoding of the L∞-norm.
Encoding the L1-norm is only slightly more complicated and can be expressed
using a summation over ite-terms. In principle, it is even possible to encode
Lp-norms in SMT for arbitrary p ≥ 1, but the complexity of the underlying
decision procedures for non-linear Real Arithmetic is prohibitively high.
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Fig. 1. A short example of an Autoencoder.

In the L∞-norm, an input is an ε-adversarial example if there exists a di-
mension i ∈ {1, . . . , l1} in which the absolute value of the difference of the input
output in this dimension is larger than ε. This can be expressed in LRA by

ϕdist
ε :=

∨
1≤i≤l1

[
[x1,j − xN,j > ε] ∨ [xN,j − x1,j > ε]

]
.

Before we continue with the final formula ϕae
ε , let us briefly illustrate the

constraints generated so far using an example.

Example 1. Consider the simple autoencoder (with ReLU-activation) in Figure 1,
consisting of two neurons in the input layer, one neuron in the single hidden
layer, and two neurons in the output layer. Moreover, assume that we are given
one polytope P consisting of the intersection of four half-spaces −1 ≤ x, x ≤ 1,
−1 ≤ y, and y ≤ 1 (i.e., a unit box around the origin). Then, the formulas ϕf ,
ϕA, and ϕdist

ε are given by

ϕf := [S2,1 = x1,1 + (−1)x1,2] ∧ [x2,1 = ite(S2,1 < 0, 0, S2,1)] ∧
[x3,1 = 2x2,1 ∧ x3,2 = (−2)x3,2],

ϕA := x1,1 ≤ 1 ∧ x1,1 ≥ −1 ∧ x1,2 ≤ 1 ∧ x1,2 ≥ −1,

ϕdist
ε := [x1,1 − x3,1 > ε ∨ x3,1 − x1,1 > ε] ∨ [x1,2 − x3,2 > ε ∨ x3,2 − x1,2 > ε].

Finally, we combine all constraints generated so far into a single formula
ϕae
ε := ϕf ∧ϕA ∧ϕdist

ε . As the next theorem states, this formula indeed expresses
the existence of an ε-adversarial example of the autoencoder f in the region A.

Theorem 1. Let f be an autoencoder, A a region, dist a distance function,
ε > 0, and ϕae

ε as defined above. Then, the following two properties hold:

1. If an ε-adversarial example exists, then ϕae
ε is satisfiable.

2. If ϕae
ε is satisfiable, say by the interpretation I, then

(
I(x1,1), . . . , I(x1,l1)

)
is an ε-adversarial example.

Theorem 1 now suggests a simple procedure to find ε-adversarial examples:
simply construct ϕae

ε , run an SMT solver, and return
(
I(x1,1), . . . , I(x1,l1)

)
if

a satisfying assignment I |= ϕae
ε exists. However, the SMT solver might report

that ϕae
ε is unsatisfiable. In this case, Theorem 1 guarantees that no ε-adversarial

example exists. The proof of Theorem 1 can be found in the supplementary
material3. We exploit this property now to approximate the worst-case error of
an autoencoder.
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Algorithm 1: Computing wce up to accuracy δ

Input: Autoencoder f , Region A, distance function dist , start value ε0 > 0,
accuracy δ > 0

1 εlow = εup = ε0
2 Construct ϕae

ε0 and check satisfiability using an SMT solver
3 if ϕae

ε0 is satisfiable then
4 Increase εup by εup ∗ 2 until ϕae

εup becomes unsatisfiable

5 else
6 Decrease εlow by εlow/2 until ϕae

εlow becomes satisfiable or εlow < δ (in which
case return εlow)

7 end
8 ε? ← Binary-searchf,A,dist(εlow, εup, δ)) // involves calls to SMT solver

9 return ε?

4.4 Approximating the Worst-Case Error

We now provide an algorithm for approximating the worst-case error of an
autoencoder. Our algorithm, which is sketched in pseudocode as Algorithm 1, is
based on the method for finding ε-adversarial examples from Section 4.3. Apart
from the autoencoder itself, the safety-critical region, and a distance function,
it expects two additional arguments: a start value ε0 > 0 for the search and
an accuracy value δ > 0. The start value ε0 is used as an initial estimate for
wce(f,A) and can be either initialized arbitrarily or based on domain knowledge.
The accuracy, on the other hand, is a measure of how close the output of
Algorithm 1 is to the actual value of wce(f,A). A smaller δ results in a more
precise approximation of wce(f,A), but it also increases the computation time.

Algorithm 1 uses a binary search to find a sufficiently close approximation
of wce(f,A) (see line 8). To this end, it uses two values εlow < εup for which it
maintains the invariant that (a) there exists an εlow-adversarial example and
(b) there does not exist an εup-adversarial example in the given region. Hence,
wce(f,A) is guaranteed to lie in the interval [εlow, εup]. The initial values for
εlow and εup are obtained by starting with ε0 and increasing εup or decreasing
εlow until the invariant is established (see lines 1 to 7). Subsequently, the binary
search then repeatedly runs the procedure for finding ε-adversarial examples and
updates the bounds εlow and εup accordingly. Algorithm 1 stops once the interval
[εlow, εup] is small enough (i.e. less than 2δ). In summary, Algorithm 1 provides
an effective procedure to compute the worst-case error of an autoencoder up to a
user-defined accuracy δ > 0, as formalized in the theorem below.

Theorem 2. Let f be an autoencoder, A a region, and δ > 0. Then, Algorithm 1
terminates eventually and outputs a value ε? ∈ [wce(f,A)− δ,wce(f,A) + δ].

Theorem 2 follows from Theorem 1 and the fact that the binary search of
Algorithm 1 narrows down the interval [εlow, εup] until it is smaller than 2δ. The
latter fact also implies the termination of Algorithm 1.
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The complexity of Algorithm 1 consists of two parts: the binary search and

the SMT solver. The number of steps in the binary search is in O(log(wce(f,A)
δ )).

In each step the SMT solver is called once with a runtime that mainly depends
on the number of atomic formulas in (the respective) ϕae

ε . Under the restrictions
in Section 4 there are O(n+m) many atomic formulas where n is the number of
neurons in the autoencoder and m is the number of halfspaces used to construct
the safety-critical region. Note that the number of atomic formulas arising from
the L1 and L∞ distance depends linearly on the dimension of the input/output
space of the autoencoder and is hence in O(n). Even though encoding the problem
as a formula is inexpensive, the SMT solver itself is an exponential algorithm as
is relies on solving instances of the NP-complete SAT problem.

5 Empirical Evaluation

We evaluate both concepts presented within our QUGA solution: (1) extracting
an adversarial example and (2) calculation of quality bounds. For evaluation we
use both synthetic and real-world data. For future comparison and reproducibility
of our experiments we provide our implementation3 with the off-the-shelf SMT
solver Z3. As Z3 is not specialised for neural nets, our approach is not scalable
enough to deal with benchmark datasets such as MNIST or CIFAR-10. This is
one of the most urgent challenges we intend to tackle in future work.

0 100 200 300 400 500 600 700

−1

0

1 Sine curve

Reconstruction

Fig. 2. Synthetic sine curve with two frequencies and noise with its reconstruction by
the autoencoder.

5.1 Experiment Setup

We use synthetic time series generated by sine curves with two different frequencies
(35 and 105) and random gaussian noise (σ = 0.1) per time-point. Additionally, we
use ECG5000 data from the UCR time series repository [5]. We train autoencoders

3https://github.com/KDD-OpenSource/QUGA
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with a topology of L = (35, 5, 35) with 5 hidden ReLU nodes and 35 linear output
nodes using the MSE loss function. Training data consists of time windows of
length 35 without overlap. For the sine curve the time windows correspond to 4
clusters: The full sine curve and the beginning, the middle and the end of the large
sine curve. We denote them by Cfull, Cbeg, Cmid and Cend respectively. For the
ECG5000 dataset, we obtain 8 clusters arising from 2 classes and 4 time windows.
We call them Ci x where i ∈ {1, 2, 3, 4} and x ∈ {u, b} indicating the upper or
lower part of the respective time window. As critical region A we evaluate a
box around the two sine curves with width 0.2 in every dimension. This region
contains by construction the majority of training data. For the ECG5000 dataset
we extract representative time series for the two main classes and add a margin
of 0.25. We visualize the regions along with the training data in Figure 3.

20 40 60 80 100 120 140

−6

−4

−2

0

2

Fig. 3. ECG5000 dataset with two safety-critical regions (red and green) obtained by
extracting prototypes for two classes and adding a margin of 0.25.

5.2 Extracting an Adversarial Example

The first observation is that our QUGA approach successfully extracts adversarial
examples. We depict the adversarial examples obtained in Figure 4 for the sine
curve dataset and in Figure 5 for the two safety-critical regions in the ECG5000
Dataset. Ideally an autoencoder should extract a denoised version of the input.
With the adversarial examples we have an indication whether the autoencoder
succeeds in doing so. For the sine curve the outputs of the autoencoder on
adversarial examples in Cfull, Cmid and Cend are much smoother than for the
adversarial example in Cbeg, suggesting that the autoencoder does not denoise as
well in Cbeg. For the ECG5000 dataset the autoencoder seems to denoise for all
clusters very well.

5.3 Comparing Quality Bounds with Sampling

We compare the quality bounds obtained by the QUGA approach with accuracy
0.025 to quality bounds obtained by a simple sampling approach. As a competitor
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Fig. 4. Adversarial examples for different parts of the sine curve dataset obtained by
the QUGA approach maximizing the L∞-distance between the input and the output of
the autoencoder in the respective safety-critical region. The adversarial example on the
second plot from the left indicates that this part is denoised less.
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Fig. 5. Adversarial examples for two classes and different time windows of the ECG5000
dataset obtained by the QUGA approach maximizing the L∞-distance between the
input and the output of the autoencoder in the respective safety-critical region. No
difference in denoising quality between the different plots can be seen.

to the QUGA approach we sample points in the region, calculate their L∞ errors
and take the maximum as an estimator for the L∞ − wce. Table 1 sums up
the results. First of all note, that the QUGA L∞ − wce bounds are much more
precise. The L∞−wce bound obtained by the sampling approach yields no upper
bound at all, and furthermore the lower bound is much weaker than the lower
bound obtained by QUGA in all cases. A clear drawback of sampling is the
large amount of samples required to reach our QUGA estimation. In Figure 6
we show runtime of QUGA vs. sampling with their respective error estimations.
QUGA as a systematic search scheme is more efficient, while sampling is shown
to underestimate worst-case errors.

5.4 Safety Critical Application

We demonstrate our QUGA framework on the ECG5000 dataset, by evaluating the
unsupervised training based on two time series clusters. The goal of a traditional
evaluation would be to show that all training objects are clearly separated in
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sine curve ECG

Cluster Cfull Cbeg Cmid Cend C1 b C2 b C3 u C4 u C1 u C2 u C3 b C4 b

QUGA 0.297 0.422 0.297 0.266 1.359 1.016 0.828 1.078 1.453 0.766 0.766 0.953
Sampling 0.211 0.255 0.214 0.189 1.189 0.829 0.651 0.908 1.255 0.563 0.546 0.774

Table 1. Worst-case errors as estimated by sampling and QUGA approach for the sine
curve and ECG datasets. The accuracy for the QUGA approach is 0.025.
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Fig. 6. Depiction of runtime against error estimation for the sine curve dataset. Plus
signs indicate the results by QUGA. Lines indicate results by sampling.

the latent space. In contrast, we care about all possible (infinitely many objects)
in two safety-critical areas that need to be distinguishable in the latent space.
In Figure 7 we see the resulting corridor into which points from the critical
regions can be mapped. For the first three time windows we cannot guarantee
that the autoencoder keeps points from the two regions distinguishable in the
latent space. Both clusters mix-up as the upper bound of the lower cluster is
higher than the lower bound of the upper cluster. For the last 35 time steps
though a guaranteed separation of all infinitely many points in the critical regions
is possible by the autoencoder. With this result we can give a formal quality
guarantee of the trained autoencoder. It securely extracts a latent representation
for each time series in the safety-critical area that guarantees separation of both
clusters. Please note that one could not have used the latent space to check
separability directly. We have no control over where the autoencoder maps the
safety-critical regions in the latent space. In contrast our QUGA method solves
this by symbolic representation of the autoencoder, and the systematic search of
possible unsupervised adversarial examples that lead to a mix-up of two clusters.
With this we can prove separability for all infinite points in the safety-critical
regions and not just on the finite training set.
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Fig. 7. Image spaces (red and green) into which points from the respective safety-critical
regions in Figure 3 can theoretically be mapped by the autoencoder.

6 Conclusion and Future Work

QUGA overcomes major shortcomings of unsupervised learning with autoencoders.
We provide the first methodology to bound the error of an autoencoder in a
safety-critical region. With our solution framework based on SMT solvers we
propose to search for adversarial examples in the infinite search space of a safety-
critical region. Therefore, we have defined unsupervised adversarial examples
as inputs that show maximal error even if these objects are not contained in
the training data. Our QUGA approach formulates the autoencoder, the safety-
critical region, and the error of the loss function with a logical conjunction of
linear constraints. Once we have found an unsupervised adversarial example,
it serves as a lower bound for the error while binary search allows to derive
an upper bound. We demonstrate the effectiveness of our approach on both
synthetically created and real dataset. We show that QUGA finds unsupervised
adversarial examples, provides quality guarantees with lower and upper bounds,
and outperforms sampling schemes that underestimate the maximum error.
As this is the first work for unsupervised adversarial examples on autoencoders
we expect a variety of follow-up research. In particular we aim at unsupervised
uncertainty quantification of autoencoders. Furthermore we plan to develop more
advanced adversarial attacks for specialized autoencoders in time series domain,
as well as the re-use of adversarial examples for re-training autoencoders in
safety-critical regions. Moreover we intend to make this work more scalable by
incorporating advances from the research area of SMT solvers into our approach.
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