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Abstract—Current mining algorithms for attributed graphs
exploit dependencies between attribute information and edge
structure, referred to as homophily. However, techniques fail if
this assumption does not hold for the full attribute space. In
multivariate spaces, some attributes have high dependency with
the graph structure while others do not show any dependency.
Hence, it is important to select congruent subspaces (i.e., subsets
of the node attributes) showing dependencies with the graph
structure.
In this work, we propose a method for the statistical selection
of such congruent subspaces. More specifically, we define a
measure which assesses the degree of congruence between a set
of attributes and the entire graph. We use it as the core of a
statistical test, which congruent subspaces must pass. To illustrate
its applicability to common graph mining tasks and in order to
evaluate our selection scheme, we apply it to community outlier
detection. Our selection of congruent subspaces enhances outlier
detection by measuring outlierness scores in selected subspaces
only. Experiments on attributed graphs show that our approach
outperforms traditional full space approaches and gives way to
better outlier detection.

Keywords—attributed graphs, homophily, subspace selection

I. INTRODUCTION

Attributed graphs are widely used for the representation
of social networks, gene and protein interactions, communi-
cation networks, or product co-purchase in web stores. Each
object is represented by its relationships to other objects
(edge structure) and its individual properties (node attributes).
For instance, social networks store friendship relations as
edges and age, income, and other properties as attributes.
Relationships and properties seem to be dependent on each
other. Several publications [23], [27], [8], [10] have shown
that exploiting existing dependencies is beneficial, e.g., for
cluster and outlier detection. However, techniques proposed
in these articles highly rely on this dependency assumption.
In particular, community outlier mining [10] is able to detect
an outlier node if connected nodes have similar values in all
attributes. Such assumptions are known as homophily [16] and
are widely used. However, looking at multivariate spaces, one
can observe that not all given attributes have high dependencies
with the graph structure. For example, social properties such
as income or age have strong dependencies with the graph
structure of social networks [16]. In contrast, properties such
as gender are rather independent from it. Consequently, recent
graph mining algorithms degenerate for multivariate attribute
spaces that lack dependency with the graph structure in some
of the attributes. This calls for a general pre-processing step

that selects subspaces, i.e., subsets of the attributes, showing
dependencies with the graph.

Let us illustrate this with a toy example in Figure 1. It
features a social network with friendship relation as edges and
node attributes (income, age, number of children, and shoe
size). Given a dependency between a set of attributes (e.g.,
age and number of children) and the edge structure (cf. Fig-
ure 1(a)), we observe communities of young persons without
children, old people with several children, and a deviating
outlier. Considering another subspace (cf. Figure 1(b)), we
observe a different community/outlier structure w.r.t. income.
In general, we observe a dependency between high edge counts
within a community and similar attribute values on different
selections of attributes. However, the homophily assumption
is not fulfilled for the full attribute space. Thus, the detection
of either communities or outlier nodes is hindered considering
all four attributes.

We call subsets of attributes showing a dependency with the
graph structure congruent subspaces. A core challenge in
selecting these subspaces lies in the modeling of dependence
between graph structure and attribute values. Further, one
has to ensure that congruent subspaces are selected only if
there is sufficient evidence on this dependence. We propose
the method ConSub for the statistical selection of congruent
subspaces. More specifically, we address all those problems
as follows: First, we propose a novel measure for the degree
of congruence between a set of node attributes and a graph
by means of edge counts and attribute values. We compare
edge counts in subgraphs constrained by attribute value ranges.
These constrained subgraphs are randomly chosen in a Monte
Carlo processing and are used as a source of indication
for dependencies. Our congruence measure exploits these
dependencies between random subgraphs and their attribute
subspaces. We select attribute subsets featuring those depen-
dencies in multivariate attribute spaces. This selection can
serve as general pre-processing step for algorithms that rely
on the homophily assumption on attributed graphs. That is,
our method ensures within a community similar values in
all selected attributes of a congruent subspace. The distances
between nodes (considering only attribute values from the
selected subspace) closely resemble the graph structure. This
allows us to establish a neighborhood of a node by simply
comparing distances between connected nodes, which is useful
for different mining tasks on attributed graphs [23], [27], [8],
[10]. Regarding outlier mining, one can identify community
outliers merely based on these subspace neighborhoods having
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(b) subspace {income}
Fig. 1. Toy example for congruent subspaces in a social network

identified congruent subspaces. In our paper, we focus on such
community outliers as an exemplary graph mining task and
propose an agglomerative clustering approach to search node
neighborhoods in which we compute the outlierness of each
node. This is a significant improvement over techniques that do
not consider subspaces and fall prey to the lack of homophily
in the full attribute space. To the best of our knowledge ConSub
is the first pre-processing technique that can ensure homophily
in a subset of attributes w.r.t. the graph structure.

Overall, our contributions with ConSub are as follows:

• We introduce the problem of congruent subspaces for
graph mining techniques relying on the homophily
assumption.

• We propose the first approach for the statistical
selection of congruent subspaces.

• Our selection scheme allows a clear enhancement of
community outlier mining compared to traditional
full space methods.

II. RELATED WORK

There is a variety of outlier mining models in multivari-
ate data or anomaly detection for graph data [1]. However,
there is only limited work on graph mining with multivariate
node attributes and only few papers on outlier mining on
attributed graphs. We distinguish our method from three min-
ing paradigms on attributed graphs: (1) full space approaches
assuming a dependency between all attributes and the entire
graph, (2) specialized subspace techniques using specific sub-
space selection mechanisms internally in their algorithms, and
(3) general feature selection methods that can be used as pre-
processing step to any graph mining algorithm.

Full space approaches: Regarding graph clustering, some
techniques exploit the correlation between all attributes and
the graph structure in order to improve the clustering result
[23], [27]. As an outlier mining algorithm, [8] searches for
irregular subgraphs with numeric node attributes. In contrast,
community outlier detection [10] focuses on outlier nodes
that deviate from a community of similar nodes. The major
drawback of all of these approaches is their assumption that all
node attributes are dependent w.r.t. the entire graph. However,
the quality of outlier detection is highly affected by irrelevant
attributes as we will demonstrate in our experiments. Our

method excludes such attributes, and, in contrast to traditional
full space processing, allows for robust analysis of multivariate
attribute spaces.

Specialized subspace techniques: Recent methods have ob-
served the lack of dependency in the full attribute space
and have proposed individual subspace selection schemes for
specific subgraphs. A first technique for mining frequent sub-
graphs selects subsets of attributes [24]. A graph partitioning
algorithm only incorporates binary attribute vectors in its
search for strongly connected subgraphs [4]. Other approaches
search for overlapping clusters in subsets of categorical at-
tributes [15], clusters in subspaces of numeric node attributes
[11], or outliers that can be derived from subspace clusters
in attributed graphs [18], [19]. The selection schemes of all
these techniques are based on individual subgraphs from the
graph structure [4], [15], [11]. In order to retrieve a congruent
subspace from their results, each node of the graph has to
belong to a cluster result in the same subspace. However,
these techniques do not aim to ensure this (e.g., specific cluster
definitions such cliques enforce to exclude a large number of
nodes from the graph). Thus, they can be considered specific
solutions to the problem of subspace selection, but they lack
generality and are not designed as pre-processing step for other
graph mining models.

General feature selection methods: For individually analyzing
the dependency of an attribute, the assortative mixing coeffi-
cient has been proposed in order to measure the correlation be-
tween a single attribute and the graph structure [22]. Neverthe-
less, this coefficient is not able to measure if a correlated subset
of attributes also depends on the graph structure. In contrast
to this assessment of individual attributes, feature selection
is a general pre-processing step for supervised methods, and
has been extended recently to unsupervised feature selection
on attributed graphs [25]. However, the main focus of these
techniques is the improvement of traditional feature selection
on vector data by incorporating additional information given
by object relationships in a graph structure. Hence, they do
not intend to select the attributes that show high dependencies
with the graph structure. They only utilize graphs as additional
information source. In contrast to feature selection methods,
we focus on the mutual dependency of the attribute values and
the graph structure. Furthermore, we select multiple attribute
sets that show dependence with the graph structure. In our



experiments, we will compare our subspace selection scheme
as a pre-processing step to community outlier mining with
main competitors from unsupervised feature selection [25] and
full space outlier detection [10].

III. PROBLEM OVERVIEW

We model an attributed graph by its graph structure
G = (V,E) and its attribute information A as follows:
(1) Each object o is a graph vertex o ∈ V and connected by
edges (o, p) ∈ E to other nodes p ∈ V \ {o} in the graph
structure. We assume edges to be undirected and unweighted.
(2) Each object o is described by a vector �o = (x1, ..., xd)
where the attributes are named A = {A1, . . . , Ad}.

A. Selection Scheme

Existing algorithms exploit the dependencies between both
graph G and attributes A for knowledge discovery. In par-
ticular, they exploit the assumption of homophily [16] that
connected nodes tend to have similar characteristics. This
effect is also known as assortative mixing [22]. However, this
assumption may not be fulfilled for the full space of attributes
A. Some of the attributes in A do not depend on the underlying
graph structure, or they can even show an opposite trend known
as disassortative mixing [22].
For example, community outlier mining needs to capture a
group of similar objects w.r.t. the graph structure and the
attribute values [10]. Thus, all the attribute values, used for
outlier detection, and the graph structure have to be corre-
lated. This occurs only if the network is assortative w.r.t. all
given attributes. In case a network shows disassortive mixing,
the search of similar objects w.r.t. both attribute values and
the graph structure is hindered. However, simply measuring
assortativity of a single attribute with the graph structure as
proposed in [22] is not enough.We expect outliers or clusters
to hide in combinations of attribute values, as has already
been shown for multivariate vector data [1], [6]. Thus, one
has to consider the dependency of multiple attributes among
each other and with the graph structure. We call such attribute
sets congruent subspaces.
We aim at an automatic selection of subspaces S ⊆ A that
show significant dependence with the graph structure. In this
case, connected nodes show similar values in these subsets of
the attributes. Informally, we define a congruent subspace as
S ⊆ A where the attribute values are consistent with the graph
structure.

Definition 1: Congruent Subspaces
Given graph G = (V,E) and subspace S ⊆ A,

S is congruent with G :⇔
∀ V ′ ⊆ V with high mutual similarity between the attribute
values in subspace S:
Subgraph G′ = (V ′, E′) with E′ = {(o, p) ∈ E | o, p ∈ V ′}
has significantly more edges than expected if edges were
distributed at random. The set of all selected subspaces is
then:

CS = {S ⊆ A | S is congruent with G}

A subgraph showing more edges than expected in subspace S
is the result of a positive correlation between attribute values
and the graph structure: The graph structure is congruent with

subspace S. Having less edges than expected also shows a
dependency with the graph structure. However, this negative
correlation indicates that the graph structure is opposite to the
attribute values in subspace S. Thus, the attribute values in S
are not congruent with the graph structure.
Given Definition 1, three main questions remain: (1) how to
define mutual similarity of objects within a subgraph (V ′, E′)
in subspace S, (2) how to perform the statistical significance
test on the observed edge count |E′|, and (3) how to assess the
number of expected edges based on a predefined null model.
We address all of these questions for the selection of one
congruent subspace in Section IV and describe the algorithm
for the selection of CS in Section V.

B. Community Outlier Mining

Community outliers appear in a combined consideration of
the graph structure and the attribute values. Exceptional nodes
are highly deviating in some of their attribute values from the
community they belong to [10]. In general, communities can be
found by considering the graph structure and the distribution of
the attribute values in the database as in the original publication
[10]. Communities can be detected if attribute values show a
certain degree of congruence w.r.t. the graph structure. In this
case, a community outlier can be detected as an irregularity
deviating from such a group of similar nodes.
However, outlier mining fails if the full attribute space A
does not follow the assumption that all the attributes are
congruent with the graph structure. In case of CODA [10], we
observe a huge amount of false positives and false negatives. In
particular, multivariate data poses a major problem for CODA.
As mentioned in the original publication [10], CODA can only
deal with dimensions that are correlated with the graph (i.e., in
our notion: A is congruent with the graph). However, not all
given dimensions are congruent on the graph structure in real
world networks [16], [22]. Furthermore, different subsets of
attributes correspond to different community/outlier structures
(cf. Figure 1). Thus, outliers hidden in different congruent
subspaces are missed if one only considers the full dimensional
space or a single projection of the attribute space. Therefore,
we introduce the notion of subspace community outliers.

Definition 2: Subspace Community Outlier
Given a congruent subspace S and a neighborhood N ⊆ V ,
we define an outlier as:

a node o ∈ N that shows a high deviation in S

i.e., it is highly deviating from the local neighborhood in the
attribute values of S.

In the following, we assume score(o, S) to be a function which
quantifies the outlier degree of an object in a subspace S. We
measure deviation by an aggregate of scores in all congruent
subspaces:

Definition 3: Subspace Outlier Score

score(o) =

∑
S∈CS

score(o, S)

|CS|

We deem the selection of congruent subspaces CS to be
the key feature of Definition 3. It is the major difference
to traditional outlier scores using the entire set of attributes



score(o,A). Please note that other aggregation functions or
even ensemble techniques might be of interest as well [20],
[2]. However, this is research orthogonal to our current work
and will not be addressed in this paper. Here, we focus on the
selection of CS as described in the following sections and give
more details on the instantiation of score(o, S) in Section VI.

IV. SUBSPACE SELECTION

In order to assess the congruence of a subspace S ⊆ A with
the graph structure, we consider several random subgraphs
constrained by attribute ranges in subspace S. In more detail,
we select random intervals of attributes Aj ∈ S in a Monte
Carlo processing. For each interval, we consider the subgraph
formed by the nodes that have attribute values within these
intervals. Thus, we ensure similar attribute values within the
subgraphs as it is a requirement for congruent subspaces (cf.
Definition 1). We determine the number of edges in these
subgraphs and compare them to the number of edges expected.
Observing more edges than expected highlights the depen-
dence between the selected attribute region and the induced
subgraph. In this case, we deem the edge structure and the
node attributes congruent on the subspace. In Section IV-A,
we introduce the ConSub measure for the assessment of
congruence. We describe the estimation of the number of
expected edges in Section IV-B and propose a statistical test
for the comparison of observed and expected edge counts in
Section IV-C.

A. Congruence Assessment

In ConSub, we consider intervals of the attribute values for
the retrieval of subgraphs where nodes have similar values.
These attribute regions [lowj , highj ] ∀Aj ∈ S restrict the
graph structure to subgraphs (cf. Definition 4). For an overall
assessment of the dependencies between subspaces and the
graph structure we consider several of these subgraphs that
are constrained by different attribute regions.

Given a subspace S, we define a constraint subgraph:

Definition 4: Constraint Subgraph GC,S

Given a set of constraints C consisting of all the pairs
(Ij , Aj) ∈ C formed by each dimension Aj ∈ S and an
interval Ij = [lowj , highj ], we define a constrained subgraph
GC,S = (VC,S , EC,S) as

VC,S = {o ∈ V | �o = (x1, . . . , xd) ∧ ∀Aj ∈ S : xj ∈ Ij}
and

EC,S = {(o, p) ∈ E | o ∈ VC,S ∧ p ∈ VC,S}

Continuing our running example from Figure 1, we con-
sider the constraint subgraph G{([3000,5000],income)},{income}.
Since this subgraph is congruent with the given con-
straints, we observe an unexpectedly high number of edges
|E{([3000,5000],income)},{income}|.

For our assessment of congruence, we compare this ob-
served edge count with the expected number of edges. We
compute the expected number of edges based on a null model
assuming no congruency between graph structure and attribute
values. In particular, we use a model that preserves the degree
distribution, as we will describe in Section IV-B.

Finally, the deviation of observed and expected edge counts
is measured based on the constraint subgraph. However, this
assessment of a single constraint subgraph does not provide
sufficient evidence for the congruence of the entire graph on
subspace S. In order to get a sufficient number of samples
to determine the congruence of a subspace, we propose a
Monte Carlo processing. In iteration m, we select a constraint
subgraph Gm

C,S by randomly generating a set of constraints
C in subspace S. Then, the respective samples are used to
compute the observed and expected edge count, and are passed
to a deviation function.

Definition 5: Congruence Measure
Given M Monte Carlo runs where Gm

C,S is the constraint
subgraph in iteration m:

congruence(S) ≡ 1

M

M∑
m=1

deviation(|Em
C,S |, Eexp(G

m
C,S))

where |Em
C,S | is the observed edge count in Gm

C,S and
Eexp(G

m
C,S) is the expected edge count.

The observed edge count is the number of edges of the
subgraph Gm

C,S , and the expected number of edges is estimated
under the assumption that there is no congruence between the
constraint subgraph Gm

C,S and the attribute values of S. The
observed and the expected edge count are passed to a deviation
function which is explained in Section IV-C. In our case we
perform a statistical test in order to measure the significance of
the observed deviation. The overall congruence of a subspace
S is then computed as the average of the deviation of all
constraint graphs analyzed.

B. Expected Edge Count Estimation

Definition 1 requires that a constraint subgraph has signif-
icantly more edges than expected if edges were distributed
at random. Hence, we face the problem of estimating the
expected edge count. Null models are commonly used as
the basis for such expected edge counts. They are structural
instantiations of a graph where edges are wired at random [9],
[21]. In our approach, we want to use this estimation for testing
if there are significantly more edges than expected. However,
it is essential that this estimation is as concrete as possible.
We only have to reject the null model in the case of congruent
subspaces. Thus, we propose a null model with the following
characteristics:
(1) By definition, the null model supposes attributes values and
edge structure to be independent, i.e., the attribute distribution
does not have any impact on the edge connections.
(2) We exploit information of the whole graph structure con-
sidering its structural characteristics. Previous work has shown
that communities may differ in their degree distribution. Thus,
preserving the degree distribution is an important requirement
for an accurate estimation of the expected number of edges
[21]. Therefore, we employ a null model that preserves the
degree distribution of the given graph.
(3) If a lower dimensional subspace S′

1 = S\{Aj} contains a
large number of observed edges, the expected edge count in the
higher dimensional subspace S should be high as well. Thus,
we consider lower-dimensional projections of S to compute the
expected number of edges in GC,S . We adapt the estimation
accordingly (i.e., we increase the expectation if we observe



a high number edges in a lower-dimensional projection of
S). To achieve this, we estimate the expected edge count
in a constraint subgraph GC,S based on a relaxed subgraph
GC\{(Ij ,Aj)},S\{Aj} where Aj is a randomly selected attribute.

Let us first define the degree function of the edges of
such a relaxed subgraph. Our null model preserves this degree
distribution.

Definition 6: Preserved Degree Function
Given a constraint subgraph GC,S and a randomly selected
attribute Aj , the preserved degree function of a node o ∈ V ′
is:

deg(GC,S , Aj , o) = |{(o, p) ∈ E | p ∈ V ′}|
where V ′ = VC\{(Ij ,Aj)},S\{Aj} is the set of nodes belonging
to the relaxed subgraph.

Given the set of nodes VC,S of the constraint subgraph, we
estimate the edge count by the summation of the expected
number of edges that exist between nodes in VC,S . In order
to calculate the expected edge count of a single node o
we apply the hypergeometric distribution. Each vertex draws
deg(GC,S , Aj , o) edges to other nodes without a constraint on
Aj in the constraint subgraph GC,S . Thus, each edge creates
a connection to one object in V ′ \ {o}. The population size
of the hypergeometric distribution is given by the sum of the
degrees:

∑
p∈V ′\{o} deg(GC,S , Aj , p). Since we are interested

in the expected edge count in VC,S , the sum of the conditional
degrees in VC,S \{o} describes the number of success states in
the population. Overall we obtain the following edge estimator
by summing up the mean values of each hypergeometric
distribution for each node in GC,S .

Definition 7: Expected Edge Count
Given a constraint graph GC,S = (VC,S , EC,S), the expected
edge count w.r.t. attribute Aj is computed as:

Eexp(GC,S) =
1
2

∑
o∈VC,S

deg(GC,S , Aj , o) ·

∑
p∈VC,S\{o}

deg(GC,S ,Aj ,p)

∑
p∈V ′\{o}

deg(GC,S ,Aj ,p)

It is possible to use other edge count estimators for the in-
stantiation of ConSub, but they have to satisfy the assumption
that attributes and graph structure are independent. In contrast
to existing estimators, such as [21] used for the modularity
calculation, we exclude self-loops that are meaningless in
the context of analyzing congruence. Furthermore, we have
managed to bring down the computing effort for the estimation
of the expected edge count from quadratic to linear time: The
overall population size and the number of success states of the
hypergeometric distribution have to be calculated only once
in advance with linear effort for all vertices o ∈ VC,S . The
expected number of edges is estimated by iterating over all
nodes of the constraint subgraph.

C. Statistical Test

In order to find congruent subspaces with significantly
more edges than expected (cf. Definition 1), we propose
to use a statistical test. To this end, we instantiate the
deviation(|EC,S |, Eexp(GC,S)) function in Definition 5 as
follows. With homophily being the main goal of our selection,
only subspaces with significantly more observed edges than
the expected ones should pass our selection criterion. Note that
the expected number of edges has to be computed based on

a null model guaranteeing the independence between attribute
values and edge structure, as explained in Section IV-B. So, we
can use a statistical test in order to compare the discrepancies
between the number of edges observed and the expected one
if both resources are independent. We model the null and the
alternative hypothesis for our statistical test as:

H0 : |EC,S | = Eexp(GC,S)

H1 : |EC,S | > Eexp(GC,S)

The null hypothesis represents the case where the number of
edges observed is equal to the expected one that assumes that
attribute values and graph structure are independent. As our
null model ensures this independence in its count estimation,
we can conclude from the null hypothesis that the subspace
is not congruent with the graph structure. The number of
observed edges would be as expected if the attributes values
were independent from the graph structure. On the other hand,
having a larger number of edges observed than expected shows
that the subspace is congruent. We use the alternative hypothe-
sis of a one-tailed test for ensuring the condition of congruent
subspace. For ConSub, we use the Wilcoxon signed-rank test
[26], a parameter free test without any assumption on the data
distribution. This is one possible instantiation of the statistical
test in our framework, but we are not restricted to it.

In order to have results that are significant, we cannot
apply the test on a single constraint subgraph GC,S . We
need to get several samples. We use the randomly selected
attribute Aj ∈ S, which is used to create the relaxed subgraph
GC\{(Ij ,Aj)},S\{Aj}, in order to ensure to be sensitive in the
whole attribute range. The attribute Aj randomly divided into
k intervals. Using the number of edges observed Ei

obs and the
expected one Ei

exp in the respective intervals 1 ≤ i ≤ k, the
test variable of the Wilcoxon signed-rank test is computed as:

W =

∣∣∣∣∣
k∑

i=1

[
sgn

(
Ei

obs − Ei
exp

) · rank (|Ei
obs − Ei

exp|
)]∣∣∣∣∣

where sgn(◦) is the signum function, and rank(◦) denotes
the rank using an ascending order of all |Eobs − Eexp|.
Strong discrepancy between the observed and the expected
edge counts yields large values of W . Thus, a subspace is
congruent with the graph, given a significance level α, if the
null hypothesis is rejected. We compute the p-value that can be
obtained from the parameters k and α according to [26]. We
use this as the instantiation of deviation(|EC,S |, Eexp(GC,S))
in each Monte Carlo iteration (cf. Definition 5). Thus, the
congruence measure is the average p-value for all the Monte
Carlo iterations.

V. COMPUTATION

The selection of congruent subspaces S ⊆ A is computa-
tionally expensive due to the exponential number of subspaces.
Overall, one must analyze 2|A| subspaces to have the optimal
selection of congruent subspaces. Therefore, we propose to
address this issue with a standard procedure for subspace
search on vector data [7], [20], [12]. This is a heuristic based
on the well-known Apriori processing paradigm. Given d-
dimensional congruent subspaces {S1, S2, . . .}, we derive the
(d + 1)-dimensional candidate subspaces with a bottom up



procedure similarly to the Apriori algorithm [3]. However,
we only consider those subspaces that are congruent with a
significance level α for the generation of higher dimensional
subspaces.
Due to the Monte Carlo approach and the statistical mea-
sure of congruence, monotonicity does not hold. Hence, our
search does not guarantee to find all congruent subspaces.
Nevertheless, all the selected subspaces are congruent with a
significance level α. So outlier mining approaches relying on
the homophily assumption achieve substantial improvements
with this selection. In Section VII, experiments will not only
demonstrate this, but also the runtime efficiency w.r.t. the
dimensionality of our heuristic. In the following, we describe
Algorithm 1 in more detail.

Algorithm: For each subspace in the candidate set given as
parameter of the algorithm, we perform M Monte Carlo
iterations. In each Monte Carlo iteration, a relaxed subgraph
is created according to (|S| − 1) random constraints. The
remaining attribute Aj is split in k intervals, and this leads
to k constraint subgraphs to consider. These constraints are
randomly generated based on the adaptive selection of intervals
[12]. The deviations between the observed and the expected
edge count in these subgraphs are assessed using our statistical
test and are aggregated to the congruence measure. After
the execution of all Monte Carlo iterations, the congruence
value is tested against the given significance level. In case of
significance, the candidate is added to the set of congruent
subspaces. After all candidates have been analyzed, the |S|-
dimensional congruent subspaces are used in order to create
the new (|S| + 1)-dimensional candidates. We initialize the
candidate set with each attribute as a one-dimensional candi-
date subspace.

Complexity: First, we discuss the complexity of analyzing one
subspace. Then we explain the worst case scenario w.r.t. the
number of subspaces. Our proposed algorithm for the selection
of one subspace has a linear cost with the number of nodes and
edges. In particular, the complexity of analyzing one subspace
is O(M · (|S| · |V | + |E| + k · log(k))). It needs M Monte
Carlo runs for each subspace with dimensionality |S|. For
each, we have to access the entire graph (|S| · |V |) times in
order to select the constrained node sets. This is because the
chosen constraints do not guarantee that it contains nodes in
all subspaces. In the worst case we also have to iterate |E|
times over each edge in order to determine the observed edge
count. Performing the Wilcoxon signed-rank test has an effort
of (k · log(k)) since the results have to be ordered.
Regarding the number of subspaces, an exponential number of
them might be congruent according to the characteristics of the
attributed graph. However, in practice, most of the subspaces
are excluded very early in the Apriori candidate generation
as shown in our experiments with real world data. Thus, our
algorithm for subspace selection has low runtimes even for
large graphs. The number of selected subspaces depends on
the selected significance level α. In Section VII, we study the
impact of this parameter on the results and the runtimes.

VI. COMMUNITY OUTLIER DETECTION

Given the selection of congruent subspaces in Section IV,
we can already enhance the quality of existing community
outlier detection models such as CODA [10] or of other

Algorithm 1 SubspaceSelection

Input: G, M , α, k, Candidate Set Cand
Output: Congruent Subspace Set CS

1: for all S ∈ Cand do
2: for i = 1 → M do
3: choose a random Aj ∈ S
4: create a random relaxed subgraph GC\{(Ij ,Aj)},S\{Aj}
5: split Aj in a set of k random intervals Ij
6: for all constraint pairs (Aj , Ij) ∈ C do
7: determine obs. and exp. (cf. Def. 7) edge

count for the current constraint subgraph GC,S

8: end for
9: calculate test variable W

10: deviation = p-value corresponding to W
11: update congruence(S) (cf. Def. 5)
12: end for
13: if congruence(S) ≤ α then
14: CS = CS ∪ {S}
15: end if
16: end for
17: create new candidates Cand∗ using CS
18: return CS ∪ SubspaceSelection(G,M,α, k, Cand∗)

graph mining tasks [23], [27], [8] that rely on the homophily
assumption. We will show the improvement of CODA in
our experiments. However, in addition to this use of ConSub
as pre-processing, we want to exploit further properties of
congruent subspaces for a better community outlier model.
Our model yields an improvement over CODA due to (1) its
distance-based neighborhood definition that does not assume
a specific data distribution, (2) a hierarchical neighborhood
computation, and (3) a ranking of outliers overcoming binary
outlier detection. However, we point out that our distance-
based outlier model (DistOut) is just one out of many that
are conceivable on top of congruent subspace selection.

Distance-Based Neighborhood: For community outlier detec-
tion we need to define the neighborhood of a node. This
means that we have to find the set of nodes with the highest
similarity between them and this node. In the neighborhood
search, we also have to consider both the graph structure and
the attribute values. Congruent subspaces solve the main part
of this problem as they ensure that nodes with similar attribute
values are connected by the graph structure. We can exploit this
mutual similarity of connected nodes resulting from Definition
1 by considering the distances between a set of nodes for the
neighborhood search. So, we do not assume a fixed distribution
of the data (e.g., Gaussian distribution as in CODA [10]).
Overall, our idea for community outlier detection is to find the
neighborhood showing the highest similarity and to compute
the score of each node w.r.t. its neighborhood. We call the
neighborhoods consisting of nodes that are similar w.r.t. the
attribute values in a congruent subspace and highly con-
nected with each other, homogeneous neighborhoods. Given
a homogeneous neighborhood and the congruent subspace,
we can measure the local deviation of each object from its
neighborhood in the congruent subspace. A community outlier
[10] appears when it has a high local deviation. However,
ConSub selects a set of subspaces (cf. Definition 1) and each



object may belong to different homogeneous neighborhoods
depending on the congruent subspace (cf. Figure 1). Thus, an
outlier score (cf. Definition 3) has to compute the deviation of
a node w.r.t. its neighborhood in each congruent subspace. In
the following, we first describe the distance measures used to
compute the similarity between nodes. Finally, we explain the
criteria for assessing the homogeneity of a neighborhood and
present the outlier score.

Distance Measures: To search for the hierarchical neighbor-
hood, we use a bottom-up agglomerative clustering approach:
First, each node forms its own cluster and is merged to
larger clusters during the process. The agglomerative step
merges clusters with the highest similarity w.r.t. both the graph
structure and the attribute values. We need thereby to compare
the similarity of two neighborhoods N1 and N2 for the merging
process. Therefore, we first define new distance measures
without any assumption of the data distribution for clusters
in the joint space of attribute values and edge structure. The
similarity measure considers the edges between them, given
by the set of inter-cluster edges:

Einter(N1, N2) = {(o, p) ∈ E | o ∈ N1 ∧ p ∈ N2}
We compute the average distance of two connected nodes by
these inter-cluster edges.

Definition 8: Cluster Distance in the Joint Space
Given a non-empty set of inter-cluster edges Einter(N1, N2)
and a congruent subspace S, the edge distance between N1

and N2 is as follows:

dist(N1, N2) =

{
avgD(N1, N2) , if |Einter(N1, N2)| �= 0
1 otherwise.

avgD(N1, N2) =

∑
(o,p)∈Einter(N1,N2)

distS(�o, �p)

|Einter(N1, N2)|
where distS(�o, �p) ∈ [0, 1] is any normalized distance function
on the attribute projection of �o and �p on the subspace S.

Neighborhoods with the lowest distance are merged in each
step. Small distances (e.g. dist(N1, N2) ≈ 0) indicate high
similarity between two clusters w.r.t. similar attribute values
and closeness in the graph due to the available inter-cluster
edges.

Outlier Score: Each node has to be evaluated w.r.t. the neigh-
borhood it belongs to and which shows the most homogenous
behavior. To overcome the binary decision proposed in [10],
we finally compute the outlier score w.r.t. its homogeneous
neighborhood. We define the homogeneity of a neighborhood
N as follows:

Definition 9: Neighborhood Homogeneity
Given a congruent subspace S, the homogeneity of a neigh-
borhood N is

homS(N) =
interdistS(N)− intradistS(N)

max{interdistS(N), intradistS(N)}
where intradistS(N) is the average distance distS(�o, �q)
between connected nodes o, q ∈ N of the neighborhood in
subspace S. interdistS(N) is the average distance distS(�o, �p)
of nodes o ∈ N to nodes p /∈ N outside the neighborhood.

We compute the outlier score of a node o when the merg-
ing process of its current neighborhood N1 with another
neighborhood N2 does not increase the homogeneity, i.e.,
homS(N1) > homS(N1 ∪ N2). This agglomerative process
to compute the score allows to analyze the outlier property of
nodes belonging to multiple neighborhoods as shown in Figure
1(a).
Given a homogeneous neighborhood and the congruent sub-
space, we can measure the local deviation of each object from
its neighborhood in the congruent subspace. We measure the
deviation of an object o w.r.t. the homogeneous neighborhood
it belongs to and formalize the local attribute deviation as
follows:

Definition 10: DistOut Score
Given a congruent subspace S, an object o, the
neighborhood N it belongs to and the edge set
EN = {(u, v) ⊆ E | u, v ∈ N}, we define the
outlier score as:

score(o, S) =

1
|{(o,p)∈EN}| ·

∑
(o,p)∈EN

distS(�o, �p)

1
|EN | ·

∑
(u,v)∈EN

distS(�u,�v)

Following [5], we compare the average distance of a node to its
direct neighbors with the average distance of all the connected
nodes in the neighborhood in order to quantify the deviation
of the object.

VII. EXPERIMENTS

We evaluate quality, runtime, and parameterization of our
approach on synthetic and real world datasets. We facilitate
comparability and repeatability of our experiments for future
research in this area by providing datasets and parameter
settings on our website1. In our experiments we focus on
the comparison of different subspace selection schemes:
(1) no selection using the full attribute set A (FullSpace),
(2) unsupervised feature selection (LUFS) [25], and (3) our
congruent subspace selection (ConSub). For each of these
pre-processing methods we apply community outlier detection
(CODA) [10]. To ensure comparability in all respects, we have
used identical settings for the outlier mining step (CODA).
With this first setup we evaluate the quality of subspace
selection.

Second, we also show results of ConSub with our new

A
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C
 [%

]

Number of Attributes |A|

ConSub + DistOut

ConSub + CODA

LUFS + CODA

Fullspace + CODA

Fig. 2. Quality as a function of the number of attributes |A|
(ConSub settings: k = 10, M = 150 and α = 5%)

1http://www.ipd.kit.edu/∼muellere/consub/



distance-based outlier model DistOut (cf. Definition 10),
showing the full potential of our method. This setup
demonstrates the benefits of congruent subspaces for an
enhanced outlier model that exploits congruent subspaces for
a distance-based outlier definition. For quality assessment we
use the area under the ROC curve (AUC). For each position
in the ranking, we compute the ratio of precision/recall and
compute AUC as commonly used for the evaluation of outlier
rankings [1].

A. Synthetic Data

We generate synthetic datasets of different size |V |, |E|
and dimensionality |A|. The generated graphs follow a power
law distribution in order to reproduce the properties observed
in real networks [13]. Attribute information is divided into
relevant and irrelevant attributes (each 50% of |A|). For
irrelevant attributes, nodes are assigned values from a uniform
random distribution. Each relevant attribute can be part of
several congruent subspaces. An attribute is merged with
another subset of attributes to form a higher dimensional
subspace with a probability of 20%. In these congruent
subspaces, we assign nodes belonging to a community similar
attribute values following a Gaussian distribution, and thus,
fulfilling the assumption made by CODA. To ensure that there
are community outliers, we randomly select 10% of cluster
nodes and manipulate some of their attribute values in the
congruent subspaces.

Quality: We evaluate the quality of our approach contingent on
the number of attributes |A|. We depict average AUC values
in Figure 2. We use the average results on three datasets,
to reduce random effects in synthetic data generation.
Comparing FullSpace, LUFS and ConSub with CODA as
outlier mining, we clearly see an enhancement of community
outlier mining by congruent subspaces obtained from ConSub.
CODA shows many false positives and false negatives in
both full space and for the features selected by LUFS. In
particular, LUFS fails as a pre-processing for community
outlier detection as it does not ensure congruence and does
not allow different communities/outlier structures depending
on different subspaces. Overall, our distance-based outlier
detection ConSub + DistOut shows quality similar to ConSub
+ CODA. However, it is by far more efficient than CODA as
shown in the following.

Runtime: Figure 3(a) shows the runtimes with increasing
number of attributes. ConSub + DistOut and LUFS + CODA
show best scalability w.r.t. |A|. However, LUFS selects
a single subspace only, while ConSub outputs multiple
subspaces. With ConSub + DistOut, we can analyze more
subspaces within the same amount of time, and thus, reach
better detection quality of community outliers that are
hidden in different community structures determined by the
underlying congruent subspace. Overall, CODA does not
scale with the number of attributes |A|. The reason is that the
matrix operations for multivariate likelihood functions of the
underlying Gaussian distribution are costly and these matrix
operations are executed for each subspace. Additionally,
DistOut does not require an iterative algorithm to find the
optimal neighborhood of a node due to the careful selection
of the congruent subspaces. As a consequence, DistOut shows
faster runtimes overall in comparison with CODA. Regarding
our second set of scalability experiments w.r.t. number of

nodes |V | and number of edges |E|, we show results in Figure
3(b) and Figure 3(c). Similar to previous results, ConSub
+ DistOut analyzes multiple subspaces in substantially less
runtime than the original CODA algorithm or CODA enhanced
with feature selection algorithm LUFS.

Parameter Settings: The box plots in Figure 4 show
an overview of quality results achieved on all synthetic
datasets and highlights the robustness of our method
w.r.t. parameterization. ConSub has three parameters: the
significance level (α), the number of intervals (k) and the
number of Monte Carlo iterations (M). We have evaluated
the impact of each of these parameters on the quality and the
runtime. We have run a variety of parameter settings on all
synthetic datasets that have been used in previous experiments
(cf. Figure 3). In total, we analyze each parameter setting on
36 datasets of different size and dimensionality. The influence
of statistical fluctuations given by the number of Monte Carlo
iterations M does not have a large impact on the quality if we
run at least 150 iterations (cf. Figure 4(a)). However, more
iterations result in higher runtimes (cf. Figure 4(d)) without
a considerable increase in quality. We recommend to use
M = 150 as a default value for this parameter, as used in
all other experiments. The number of intervals k determines
the sample size for the statistical test in each Monte Carlo
iteration. An extremely low sample size induces a decrease in
quality, but we observe a parametrization with good quality
results for k ≥ 10 as shown in Figure 4(b). Again, a larger
sample size increases the runtime (cf. Figure 4(e)), but it does
not increase quality substantially. We set this parameter to
k = 10 as default value. The last parameter is the significance
level α which controls the generation of higher dimensional
subspaces as explained in Section V. High values α ≥ 10%
induce considerably higher runtimes (cf. Figure 4(f)) as a
large number of subspace candidates has to be processed.
On the other hand, too restrictive values α ≤ 1% require
considerably less time with a quality loss. In this case,
the number of subspaces analyzed is too small. Thus, the
choice of α = 5% is a trade-off between quality and efficiency.

B. Real Data

We use four attributed graphs obtained from real world net-
works for the evaluation of our approach. We use the Amazon
co-purchase network [14] consisting of product nodes with 28
attributes such as product prices, ratings, number of reviews,
etc. Further, we use the Enron communication network with
email transmission as edges between email addresses. Each
node contains 20 attributes describing aggregated information
about average content length, average number of recipients, or
time range between two mails.

Evaluation based on given ground-truth: In order to present
quality assessment we need some known outliers. Therefore,
we derive three attributed graphs with known outliers and
compare our detected outliers to this ground truth: Disney is
a benchmark graph from a case study in [19], in which high
school students have manually tagged unexpected Disney films
in the Amazon co-purchase network. Books is a second graph
out of the Amazon network, in which we use tagsprovided by
Amazon users. In particular, we use the popular tag amazonfail
as outlier ground-truth. This tag has been used for few years
to let users express their disagreement with the sales ranks.We
use products that were tagged by at least 20 users as outliers.
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Fig. 4. Parameter settings w.r.t. quality and runtimes. Evaluation on all (36) synthetic datasets with different dimensionalities and number of nodes

Dataset Algorithm AUC [%] Runtimes [s]

Disney ConSub + DistOut 81.77 ± 0.44 8.93
Nodes:124 ConSub + CODA [10] 67.97 ± 5.8 152.66
Edges:333 LUFS [25] + CODA [10] 44.44 ± 13.5 3.46
Attributes:28 Fullspace + CODA [10] 50 ± 0 6.05

Books ConSub + DistOut 60.02 ± 0.49 2.15
Nodes:1,418 ConSub + CODA [10] 53.52 ± 2.25 14.81
Edges: 3,695 LUFS [25] + CODA [10] -
Attributes:28 Fullspace + CODA [10] 53.35 ± 0 36.14

Enron ConSub + DistOut 74.8 ± 0.08 840.54
Nodes: 13,533 ConSub + CODA [10] 60.8 ± 6.98 1130.78
Edges:176,987 LUFS [25] + CODA [10] 48.3 ± 5.48 472.6
Attributes:20 Fullspace + CODA [10] 45.7126 ± 0 397.33

TABLE I. QUALITY AND RUNTIME ON REAL WORLD NETWORKS

Enron is our third graph using spammers as known outlier
ground-truth [17].

Since most of the approaches are non deterministic, we
have executed each algorithm 20 times in order to reduce
possible random effects. Table I shows the average AUC values

and their standard deviations. For all real world datasets, we
observe that some attributes did not show any congruence
with the graph structure independent of the parametrization
(e.g., sales rank in the Amazon network or the average content
length for the Enron network). This indicates that homophily
does not hold in the full space. CODA has low quality as it is
based on the homophily assumption. However, CODA can be
enhanced considerably by the selection of congruent subspaces
of ConSub. Regarding the new outlier model proposed (Con-
Sub + DistOut), it obtains the best results and it is the most
robust since the fluctuations between different executions are
the lowest ones. ConSub can find subspaces where the graph
structure and attribute information have dependencies and
improves the detection of outliers accordingly. Our subspace
selection scheme not only outperforms the other algorithm in
terms of average AUC, it also shows robust results with low
variance. Similarly to synthetic data ConSub + DistOut shows
efficient runtime.



Subspaces derive novel insights: To discuss novel knowledge
extracted by ConSub, we depict results from the largest con-
nected component of the Amazon network with 314,824 nodes
and 882,930 edges in Table II. ConSub retrieves eight one-
dimensional subspaces and three two-dimensional subspaces
showing congruence with the graph structure considering a
significance level of 1%. Besides the use as pre-processing
step, this result is informative regarding the network and its
dependencies. We observe that the dependencies between some
ratings (e.g., Rating 5) and the ratio of helpful votes from
the reviews are also congruent with the graph structure. This
means that two products are often co-purchased if they have
similar number of ratings and similar ratio of helpful votes
(e.g., Rating 5 and Helpful Votes appear in our congruent
subspace set). The selection of congruent subspaces is not only
relevant for outlier mining in order to ensure the underlying
homophily assumption, it also provides novel knowledge about
the dependencies between node attributes and the graph struc-
ture.

1d-Subspaces 2d-Subspaces

Nodes: 314,824 Rating 1 Rating 1 - Helpful Votes
Edges: 882,930 Rating 2
Attributes: 28 Rating 3
Level of Significance: 1% Rating 4 Rating 4 - Helpful Votes
M = 150, k = 10 Rating 5 Rating 5 - Helpful Votes
Runtime: 5160.2 s Average Rating

Number of reviews
Helpful votes

TABLE II. CONGRUENT SUBSPACES IN AMAZON NETWORK

VIII. CONCLUSION

With this work, we tackle the general problem of subspace
selection in attributed graphs. We propose the novel notion
of congruent subspaces that captures the dependency between
node attributes and the edge structure of a graph. As our main
contribution, we develop a statistical selection of congruent
subspaces, and define a general measure that assesses the
degree of congruence. We evaluate our subspace selection
scheme on community outlier mining, a graph mining task
relying on dependency between attributes and edges. We show
that ConSub outperforms traditional full space outlier detection
and recent feature selection. Nevertheless, outlier mining is
only one graph mining task. As general pre-processing step,
ConSub can also be used for clustering or pattern mining algo-
rithms, which utilize both graph and attribute information and
rely on the homophily assumption. For future research, we aim
to provide selection schemes for a mixture of attribute types
such as categorical, binary or continuous values. Additionally,
we would like to explore extensions of our subspace selection
scheme into unsupervised mining tasks but also for semi-
supervised tasks such as link prediction or label propagation.
We are convinced that subspace selection can be a useful pre-
processing step for these and other graph mining paradigms.
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