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ABSTRACT

Segmented models are widely used to describe non-stationary sequential data with
discrete change points. Their estimation usually requires solving a mixed discrete-
continuous optimization problem, where the segmentation is the discrete part and
all other model parameters are continuous. A number of estimation algorithms have
been developed that are highly specialized for their specific model assumptions.
The dependence on non-standard algorithms makes it hard to integrate segmented
models in state-of-the-art deep learning architectures that critically depend on
gradient-based optimization techniques. In this work, we formulate a relaxed
variant of segmented models that enables joint estimation of all model parameters,
including the segmentation, with gradient descent. We build on recent advances
in learning continuous warping functions and propose a novel family of warping
functions based on the two-sided power (TSP) distribution. TSP-based warping
functions are differentiable, have simple closed-form expressions, and can represent
segmentation functions exactly. Our formulation includes the important class of
segmented generalized linear models as a special case, which makes it highly
versatile. We use our approach to model the spread of COVID-19 with Poisson
regression, apply it on a change point detection task, and learn classification models
with concept drift. The experiments show that our approach effectively solves all
these tasks with a standard algorithm for gradient descent.

1 INTRODUCTION

Non-stationarity is a classical challenge in the analysis of sequential data. A common source of
non-stationarity is the presence of change points, where the data-generating process switches its
dynamics from one regime to another regime. In some applications, the detection of change points is
of primary interest, since they may indicate important events in the data (Page, 1954; Box & Tiao,
1965; Basseville & Nikiforov, 1986; Matteson & James, 2014; Li et al., 2015; Arlot et al., 2019;
Scharwächter & Müller, 2020). Other applications require models for the dynamics within each
segment, which may yield more insights into the phenomenon under study and enable predictions. A
plethora of segmented models for regression analysis (McGee & Carleton, 1970; Hawkins, 1976;
Lerman, 1980; Bai & Perron, 2003; Muggeo, 2003; Acharya et al., 2016) and time series analysis
(Hamilton, 1990; Davis et al., 2006; Aue & Horváth, 2013; Ding et al., 2016) have been proposed in
the literature, where the segmentation materializes either in the data dimensions or the index set.

We adhere to the latter approach and consider models of the following form. Let x = (x1, ..., xT ) be
a sequence of T observations, and let z = (z1, ..., zT ) be an additional sequence of covariates used
to predict these observations. Observations and covariates may be scalars or vector-valued. We refer
to the index t = 1, ..., T as the time of observation. The data-generating process (DGP) of x given
z is time-varying and follows a segmented model with K � T segments on the time axis. Let τk
denote the beginning of segment k. We assume that

xt | zt
iid∼ fDGP (zt, θk) , if τk ≤ t < τk+1, (1)
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where the DGP in segment k is parametrized by θk. This scenario is typically studied for change
point detection (Truong et al., 2020; van den Burg & Williams, 2020) and modeling of non-stationary
time series (Guralnik & Srivastava, 1999; Cai, 1994; Kohlmorgen & Lemm, 2001; Davis et al., 2006;
Robinson & Hartemink, 2008; Saeedi et al., 2016), but also captures classification models with
concept drift (Gama et al., 2013). and segmented generalized linear models (Muggeo, 2003)

We express the segmentation of the time axis by a segmentation function ζ : {1, ..., T} −→ {1, ...,K}
that maps each time point t to a segment identifier k. The segmentation function is monotonically
increasing with boundary constraints ζ(1) = 1 and ζ(T ) = K. We denote all segment-wise
parameters by θ = (θ1, ..., θK). The ultimate goal is to find a segmentation ζ as well as segment-wise
parameters θ that minimize a loss function L(ζ, θ), for example, the negative log-likelihood of the
observations x. Existing approaches exploit the fact that model estimation within a segment is often
straightforward when the segmentation is known. These approaches decouple the search for an
optimal segmentation ζ algorithmically from the estimation of the segment-wise parameters θ:

min
ζ,θ
L(ζ, θ) = min

ζ
min
θ
L(ζ, θ). (2)

Various algorithmic search strategies have been explored for the outer minimization of ζ, including
grid search (Lerman, 1980), dynamic programming (Hawkins, 1976; Bai & Perron, 2003), hierarchical
clustering (McGee & Carleton, 1970) and other greedy algorithms (Acharya et al., 2016), some of
which come with provable optimality guarantees. These algorithms are often tailored to a specific
class of models like piecewise linear regression, and do not generalize beyond. Moreover, the use
of non-standard optimization techniques in the outer minimization hinders the integration of such
models with deep learning architectures, which usually perform joint optimization of all model
parameters with gradient descent.

In this work, we provide a continuous and differentiable relaxation of the segmented model from
Equation 1 that allows joint optimization of all model parameters, including the segmentation function,
using state-of-the-art gradient descent algorithms. Our formulation is inspired by the learnable
warping functions proposed recently for sequence alignment (Lohit et al., 2019; Weber et al., 2019).
In a nutshell, we replace the hard segmentation function ζ with a soft warping function γ. An optimal
segmentation can be found by optimizing the parameters of the warping function. We propose a
novel class of piecewise-constant warping functions based on the two-sided power (TSP) distribution
(Van Dorp & Kotz, 2002; Kotz & van Dorp, 2004) that can represent segmentation functions exactly.
TSP-based warping functions are differentiable, have simple closed-form expressions that allow
fast evaluation, and their parameters have a one-to-one correspondence with segment boundaries.
Source codes for the model and all experiments can be found in the online supplementary material at
https://github.com/diozaka/diffseg.

2 RELAXED SEGMENTED MODELS

We relax the model definition from Equation 1 in the following way. We assume that

xt | zt
iid∼ fDGP

(
zt, θ̂t

)
, (3)

where we substitute the actual parameter θk of the DGP at time step t in segment k by the predictor θ̂t.
The predictor θ̂t is a weighted sum over the individual segment parameters

θ̂t :=
∑
k

ŵktθk (4)

with weights ŵkt ∈ [0, 1] such that
∑
k ŵkt = 1 for all t. The weights can be viewed as the entries

of a (soft) alignment matrix that aligns every time step t to a segment identifier k. Given a (hard)
segmentation function ζ, we can construct a (hard) alignment matrix by setting ŵkt = 1 if and only
if ζ(t) = k. In our relaxed model, we employ a continuous predictor ζ̂t ∈ [1,K] for the value of the
segmentation function ζ(t) and let the weight ŵkt depend on the difference between ζ̂t and k:

ŵkt := max
(

0, 1−
∣∣∣ζ̂t − k∣∣∣) (5)

The smaller the difference, the closer the alignment weight ŵkt will be to 1. If k ≤ ζ̂t ≤ k + 1,
this choice of weights leads to a linear interpolation of the parameters θk and θk+1 in Equation 4.
Higher-order interpolations can be achieved by adapting the weight function accordingly.
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Figure 1: Example segmentation function ζ(t) and warping functions γi(u). The shaded regions are
piecewise constant in γ1 and γ2, respectively; γ3 is strictly increasing.

The key question is how to effectively parametrize the continuous predictors ζ̂t for the segmentation
function. For this purpose, we observe that the continuous analogue of a monotonically increasing
segmentation function is a warping function (Ramsay & Li, 1998). Warping functions describe
monotonic alignments between closed continuous intervals. Formally, the function γ : [0, 1] −→
[0, 1] is a warping function if it is monotonically increasing and satisfies the boundary constraints
γ(0) = 0 and γ(1) = 1. Any warping function γ can be transformed into a continuous predictor ζ̂t
by evaluating γ at T evenly-spaced grid points on the unit interval [0, 1] and rescaling the result to
the domain [1,K]. Let ut = (t− 1)/(T − 1) for t = 1, ..., T be a unit grid. We define

ζ̂t := 1 + γ(ut) · (K − 1). (6)

Similar transformations of warping functions have recently been applied for time series alignment
with neural networks (Weber et al., 2019). An example segmentation function and predictors based
on several warping functions are visualized in Figure 1. With the transformation from Equation 6,
our relaxed segmented model is parametrized by the segment parameters θ and the parameters of
the warping function γ that approximates the segmentation. The discrete-continuous optimization
problem from Equation 2 has changed to a continuous optimization problem that is amenable to
gradient-based learning:

min
γ,θ
L(γ, θ). (7)

Figure 1 illustrates that the ideal warping function for segmentation is piecewise constant—a formal
argument is provided in Appendix A. Several families of warping functions have been proposed in
the literature and can be employed within our model (Aikawa, 1991; Ramsay & Li, 1998; Gervini
& Gasser, 2004; Gaffney & Smyth, 2004; Claeskens et al., 2010; Freifeld et al., 2015; Detlefsen
et al., 2018; Weber et al., 2019; Kurtek et al., 2011; Lohit et al., 2019). However, none of them
contains piecewise-constant functions, and many of them are more expressive than necessary for the
segmentation task. Below, we define a novel family of piecewise-constant warping functions that is
tailored specifically for the segmentation task, with only one parameter per change point.

3 TSP-BASED WARPING FUNCTIONS

Warping functions are similar to cumulative distribution functions (cdfs) for random variables (Lohit
et al., 2019). Cdfs are monotonically increasing, right-continuous, and normalized over their domain
(Wasserman, 2004). If their support is bounded to [0, 1], they satisfy the same boundary constraints
as warping functions. Therefore, we can exploit the vast literature on statistical distributions to define
and characterize families of warping functions. Our family of warping functions is based on the
two-sided power (TSP) distribution (Van Dorp & Kotz, 2002; Kotz & van Dorp, 2004).

3.1 BACKGROUND: TWO-SIDED POWER DISTRIBUTION

The TSP distribution has been proposed recently to model continuous random variables with bounded
support [a, b] ⊂ R. It generalizes the triangular distribution and can be viewed as a peaked alternative
to the beta distribution (Johnson et al., 1994). In its most illustrative form, its probability density
function (pdf) is unimodal with power-law decay on both sides, but it can yield U-shaped and J-shaped
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Figure 2: Three-parameter variant of the two-sided power distribution TSP(m,w, n) on the interval
[0, 1]. Dashed lines denote the modes m, arrows the widths w; shaded regions have probability zero.
Top row: probability density function. Bottom row: cumulative distribution function.

pdfs as well, depending on the parametrization. Formally, the pdf is given by

fTSP(u; a,m, b, n) =


n
b−a

(
u−a
m−a

)n−1
, for a < u ≤ m

n
b−a

(
b−u
b−m

)n−1
, for m ≤ u < b

0, elsewhere,

(8)

with a ≤ m ≤ b. a and b define the boundaries of the support, m is the mode (anti-mode) of the
distribution, and n > 0 is the power parameter that tapers the distribution. The triangular distribution
is the special case with n = 2. In the following, we restrict our attention to the unimodal regime with
a < m < b and n > 1. In this case, the cdf is given by

FTSP(u; a,m, b, n) =


0, for u ≤ a
m−a
b−a

(
u−a
m−a

)n
, for a ≤ u ≤ m

1− b−m
b−a

(
b−u
b−m

)n
, for m ≤ u ≤ b

1, for b ≤ u.

(9)

For convenience, we introduce a three-parameter variant of the TSP distribution with support restricted
to subintervals of [0, 1] located around the mode. It is fully specified by the mode m ∈ (0, 1), the
width w ∈ (0, 1] of the subinterval, and the power n > 1. Depending on the mode and the width, the
distribution is symmetric or asymmetric. Illustrations of the pdf and cdf of the three-parameter TSP
distribution for various parametrizations can be found in Figure 2. We denote the three-parameter
TSP distribution as TSP(m,w, n) and write fTSP(u;m,w, n) and FTSP(u;m,w, n) for its pdf and
cdf, respectively. The original parameters a and b are obtained from m and w via

a = max
(

0,min
(

1− w,m− w

2

))
, (10)

b = min(1, a+ w), (11)

and yield a unimodal regime. Intuitively, the three-parameter TSP distribution describes a symmetric
two-sided power kernel of window size w that is located at m and becomes asymmetric only if
a symmetric window would exceed the domain [0, 1]. An advantage of the TSP distribution over
the beta distribution is that its pdf and cdf have closed form expressions that are easy to evaluate
computationally. Moreover, they are differentiable almost everywhere with respect to all parameters.

3.2 WARPING WITH MIXTURES OF TSP DISTRIBUTIONS

We define the TSP-based warping function γTSP : [0, 1] −→ [0, 1] for a fixed number of segmentsK as
a mixture distribution of K−1 three-parameter TSP distributions. Mixtures of unimodal distributions
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Table 1: The relaxed segmented model with TSP-based warping functions.

data generating process xt | zt
iid∼ fDGP

(
zt, θ̂t

)
t = 1, ..., T

parameter predictors θ̂t :=
∑
k

θk max
(

0, 1−
∣∣∣ζ̂t − k∣∣∣) t = 1, ..., T

segmentation predictors ζ̂t := 1 + γTSP

(
t− 1

T − 1
;m

)
· (K − 1) t = 1, ..., T

TSP mode predictors mk :=

∑
k′≤k exp(µk′)∑K
k′=1 exp(µk′)

k = 1, ...,K − 1

segment parameters θk k = 1, ...,K
TSP parameters µk k = 1, ...,K

have step-like cdfs that approximate segmentation functions. We use uniform mixture weights, and
treat the width w and power n of the TSP component distributions as fixed hyperparameters. The
components differ only in their modes m = (m1, ...,mK−1) with mk ∈ (0, 1):

γTSP(u;m) :=
1

K − 1

∑
k

FTSP(u;mk, w, n). (12)

We constrain the modes to be strictly increasing, so that γTSP is identifiable. If the windows around
two consecutive modes mk−1 and mk are non-overlapping, then γTSP(u;m) = k−1

K−1 between these
windows. Furthermore, γTSP(u;m) = 0 before the first window and γTSP(u;m) = 1 after the last
window. Therefore, the family of TSP-based warping functions contains piecewise-constant functions.
The functions γ1 and γ2 in Figure 1 are examples of TSP-based warping functions. We show in
Appendix A that any segmentation function can be represented by a TSP-based warping function.

4 MODEL ARCHITECTURE

We have described all components of the relaxed segmented model architecture. It can use any family
of warping functions to approximate a segmentation function. An overview of the complete model
architecture with TSP-based warping functions is provided in Table 1. To simplify the estimation
problem, we rewrite the TSP modes as a normalized cumulative sum,

mk :=

∑
k′≤k exp(µk′)∑K
k′=1 exp(µk′)

for k = 1, ...,K − 1 (13)

with unconstrained real parameters µ = (µ1, ..., µK). The transformation of the parameters guaran-
tees that the modes m = (m1, ...,mK−1) are strictly increasing and come from the interval (0, 1).
The warping function is now overparametrized, since the transformation is invariant to additive terms
in the parameters µ. This issue can be resolved by enforcing µ1 := 0.

The learnable parameters of this architecture are θ = (θ1, ..., θK) for the DGP and µ = (µ1, ..., µK)
for the warping function. The hyperparameters are the number of segments 1 < K � T , and the
window sizew ∈ (0, 1] and power n > 1 of the TSP distributions. This architecture is a concatenation
of simple functions that are either fully differentiable or differentiable almost everywhere. Therefore,
all parameters can be learned jointly using gradient descent. A hard segmentation ζ of the input
sequence can be obtained at any time during or after training by rounding ζ̂t to the nearest integers.

5 EXPERIMENTS

Our relaxed segmented model is highly versatile and can be employed for many different tasks. In
Section 5.1, we study the performance of our approach in estimating a segmented generalized linear
model (GLM) (Muggeo, 2003) on COVID-19 data. In Section 5.2, we evaluate our approach on
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Figure 3: Segmented Poisson regression results on COVID-19 case numbers in Germany.

a change point detection benchmark against various competitors. In Section 5.3, we apply it on a
streaming classification benchmark with concept drift. At last, Section 5.4 illustrates potential future
applications of our model for discrete representation learning. We implemented our model in Python1

using PyTorch2 and optimize the parameters with ADAM (Kingma & Ba, 2015). We employ three
different families of warping functions in our relaxed model: nonparametric (NP) (Lohit et al., 2019),
CPA-based (CPAb) (Weber et al., 2019), and our TSP-based functions (TSPb). Source codes can be
found in the supplementary material.

5.1 POISSON REGRESSION

Recent work has applied segmented Poisson regression to model COVID-19 case numbers (Küchen-
hoff et al., 2020; Muggeo et al., 2020). We follow Küchenhoff et al. (2020) and model daily time
series of newly reported COVID-19 cases during the first wave of the pandemic. We obtained official
data for Germany from Robert Koch Institute.3 A visualization of the reported data in Figure 3
(right plot, bars) reveals non-stationary growth rates and weekly periodicity. Therefore, we use time
and a day-of-week indicator as covariates in the model. We tie the coefficients for the day-of-week
indicators across all segments, while the daily growth rates and the bias terms differ in every segment.
We estimate a standard segmented Poisson regression model with the baseline algorithm by Muggeo
(2003), and our relaxed models (TSPb, CPAb, NP) with gradient descent. We estimate the baseline
model and the relaxed models with K = 2, 4, 8, 16, 32, and 64 segments. The true number of
segments is unknown in this task. More details can be found in Appendix B.1.

Figure 3 (left plot) shows the goodness-of-fit (log-likelihood) of all models. TSPb consistently
reaches the performance of the baseline algorithm. Moreover, TSPb consistently outperforms the
other families of warping functions in this experiment. The improvement over NP is particularly
large, which indicates that the “nonparametric” warping functions of Lohit et al. (2019) are harder to
train than the parametric families. CPAb achieves a performance similar to TSPb, but the training
time is much longer due to the more complex mathematical operations involved.

We observe that the goodness-of-fit generally grows with the number of segments K and approaches
the performance of a saturated model (one Poisson distribution per data point). For K > 8, the
baseline of Muggeo (2003) terminates without a model estimate. Figure 3 (right plot) visualizes the
best TSPb model for K = 4 (blue line). We also provide smoothed predictions where the average
day of week (dow) effect is incorporated into the bias term to highlight the change of the growth
rate from segment to segment (purple line). The three change points are located at 2020-03-16,
2020-03-31, and 2020-05-05. The baseline algorithm of Muggeo (2003) detects consistent change
points at 2020-03-16 (±0 days), 2020-03-30 (−1 day), and 2020-05-01 (−4 days). Since the reported
data is not iid within a segment (it is only conditionally iid given the covariates), other algorithms for
change point detection cannot be applied as competitors on this task. Overall, the experiment shows
that our model architecture allows effective training of segmented generalized linear models using
gradient descent, in particular, when employed with TSPb warping functions.

1https://python.org/
2https://pytorch.org/
3https://www.rki.de/
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Figure 4: Change point detection task of Arlot et al. (2019) with detection results from our model.

Table 2: Empirical change point detection results.

algorithm sensitivity #CPs (mean±std) dhdf (mean±std) dfro (mean±std) reference

random - 10 127.8± 45.5 3.3± 0.2 baseline

DP≥1 µσ 10 753.3± 120.8 4.1± 0.3 Truong et al. (2020)
DP≥10 µσ 10 123.6± 170.7 2.1 ± 0.7 Truong et al. (2020)
BinSeg µσ 10.0± 3.1 122.0± 97.7 2.5± 0.4 Scott & Knott (1974)
PELT µσ 86.2± 26.7 100.0± 26.9 8.7± 1.5 Killick et al. (2012)
NP µσ 10 88.4± 35.7 2.3± 0.4 this work
CPAb µσ 10 88.4± 32.3 2.7± 0.3 this work
TSPb µσ 10 82.5 ± 32.3 2.3± 0.3 this work

E-Divisive * 5.9± 1.9 162.0± 108.2 2.2± 0.4 Matteson & James (2014)
KCP * 8.6± 1.4 67.3± 55.1 1.4± 0.5 Arlot et al. (2019)
KCpE * 10 33.8 ± 37.6 1.2 ± 0.6 Harchaoui & Cappé (2007)

sensitivity: µσ = mean/variance only, * = full distribution.
#CPs: number of change points; if equal to 10, #CPs is a parameter, otherwise, it is inferred automatically.

5.2 CHANGE POINT DETECTION

In the next experiment, we evaluate our relaxed segmented model on a change point detection task
with simulated data. Our experimental design exactly follows Arlot et al. (2019). All details are
given in Appendix B.2. We sample random sequences of length T = 1000 with 10 change points at
predefined locations. For every segment in every sequence, a distribution is chosen randomly from a
set of predefined distributions, and observations within that segment are sampled independently from
that distribution. We follow scenario 1 of Arlot et al. (2019), where all predefined distributions have
different means and/or variances. An example is shown in Figure 4 (left). We sample N = 500 such
sequences, with change points at the same locations across all samples.

We apply our relaxed segmented model to estimate the change points. We model the data generating
process by a normal distribution with different means and variances in every segment. This design
choice makes our approach sensitive only to changes in the means and variances of the observed data,
and no other distributional characteristics. We fit our model individually to all N sequences to obtain
individual estimates for the change points. Figure 4 (right) shows how many times a specific time
step was detected as a change point by our approach (with TSPb warping functions). We observe
clear peaks at the correct change point locations, which indicates that our model successfully recovers
the original segmentations in many runs.

Table 2 summarizes the empirical detection performance of our approach (TSPb, CPAb and NP)
and various competitors, including a baseline where change points are drawn randomly without
replacement. It shows the Hausdorff distance dhdf and Frobenius distance dfro between the true
segmentations and the detected segmentations (the lower the better). Among the approaches that
detect changes in the mean and variance, our model performs best in terms of dhdf and second best in
terms of dfro, regardless of the choice of warping function. Note that all approaches in this group
optimize the same objective function (the likelihood of the data under a normal distribution). The
dynamic programming approaches (DP≥`) (Truong et al., 2020) exactly find the optimal solution for a
predefined number of change points, with a minimum segment length of `. PELT (Killick et al., 2012)
finds the optimal solution with an arbitrary number of change points, while BinSeg (Scott & Knott,
1974) approximates that solution. Although our gradient-based method finds suboptimal solutions in
terms of the normal likelihood, it produces results with the lowest segmentation costs. This indicates
a regularizing effect of the relaxed segmented model that avoids degenerate segmentations. Our
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Figure 5: Classification performance on the insect stream benchmark of Souza et al. (2020).

approach is only outperformed by algorithms for kernel-based change point detection (Harchaoui &
Cappé, 2007; Arlot et al., 2019) that are sensitive towards all distributional characteristics.

5.3 CONCEPT DRIFT

A key novelty of our segmented model architecture is that it allows joint training of the segmentation
and any other model component using gradient descent. As a proof of concept, we apply our model
on a classification problem with concept drift (Gama et al., 2013). The model has to learn the points
in time when the target concepts change, and a useful feature transformation for the task. We use
the insect stream benchmark of Souza et al. (2020) for this purpose. The task is to classify insects
into 6 different species using 33 features collected from an optical sensor. The challenge is that these
species behave differently when the air temperature (which is not included as a feature) changes. The
benchmark contains multiple data streams, where the air temperature is controlled in different ways
(incremental, abrupt, incremental-gradual, incremental-abrupt-reoccurring, incremental-reoccurring).
The classifier must adapt the learned concepts depending on the current air temperature.

We employ our relaxed segmented model for softmax regression with the cross entropy loss to
obtain segmentations of the data streams. We focus on the five data streams with balanced classes
from the benchmark, and measure performance by the classification accuracy. We fit models with
K = 2, 4, 8, ..., 128 segments using TSPb warping functions. We transform the input instances with
a fully connected layer followed by a ReLU nonlinearity before passing them to the segmented
model. The feature transformation is shared across all segments. We jointly learn the parameters
of the segmented model and the feature transformation with gradient descent. Details can be found
in Appendix B.3. Results are visualized in Figure 5. In addition to our own results, we include
the prequential accuracies of the strongest competitors reported by Souza et al. (2020): Leveraging
Bagging (LB) (Bifet et al., 2010) and Adaptive Random Forests (ARF) (Gomes et al., 2017).

Our relaxed segmented model reaches and outperforms the strongest competitors on all streams from
the benchmark, if the number of segments K is large enough to accommodate the concept drift
present in the stream. Note that only the data stream with abrupt concept drift satisfies our modeling
assumption of a piecewise stationary data generating process. It consists of six segments with constant
air temperatures within each segment. The incremental-gradual stream has three segments, with
mildly varying temperatures in the outer segments and mixed temperatures in the inner segment. The
black boxes in their plots show the performances achieved with our approach for K = 6 and K = 3
segments, respectively. The results indicate that these are in fact the minimum numbers of segments
required to obtain competitive performance on these data streams.

5.4 DISCRETE REPRESENTATION LEARNING

At last, we apply our model on a speech signal to showcase its potential for discrete representation
learning on the level of phonemes. We assume that the speech signal—represented by a sequence of
12-dimensional MFCC vectors—is piecewise constant within a phoneme. We model it by a minimal
DGP with no covariates that simply copies the parameter vectors to the output. See Appendix B.4 for
a complete model description. We fit the model to a single utterance (“choreographer”, 10 phonemes)
from the TIMIT corpus (Garofolo et al., 1993) by minimizing the mean squared error loss, and obtain:

Although the simple DGP does not capture all dynamics of the speech signal, 7 out of 9 phoneme
boundaries were correctly identified, with a time tolerance of 20 ms. This minimal experiment
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observed sequence, with true phoneme boundaries predicted sequence, with true phoneme boundaries

suggests that relaxed segmented models, when combined with more powerful DGPs, may be useful
for discrete representation learning (Rolfe, 2017; van den Oord et al., 2017; Fortuin et al., 2019),
in particular for learning segmental embeddings (Kong et al., 2016; Wang et al., 2018; Chorowski
et al., 2019; Kreuk et al., 2020). In fact, our relaxed segmented model may be part of a larger model
architecture, where the covariates zt and the parameters θk come from some upstream computational
layer, and the outputs xt are passed on to the next computational layer with an arbitrary downstream
loss function. The interpretation of zt as covariates and θk as parameters is merely for consistency
with prior work on segmented models. It is more accurate to interpret zt as temporal variables that
differ for every time step t, and θk as segmental variables that differ for every segment k. The DGP
combines the information from both types of variables to produce an output for every time step.

6 CONCLUSION

We have described a novel approach to learn segmented models for non-stationary sequential data
with discrete change points. Our relaxed segmented model formulation is highly versatile and can
use any family of warping functions to approximate a hard segmentation function. If the family of
warping functions is differentiable, our model can be trained with gradient descent. A key advantage
of a differentiable model formulation is that it enables the integration of state-of-the-art learning
architectures within segmented models. We have introduced the novel family of TSP-based warping
functions designed specifically for the segmentation task: it is differentiable, contains piecewise-
constant functions that exactly represent segmentation functions, its parameters directly correspond
to segment boundaries, and it is simple to evaluate computationally. The experiments on diverse tasks
demonstrate the modeling capacities of our approach.

Limitations and future work. The most immediate limitation of our relaxed segmented model
that it shares with classical segmented models (Bai & Perron, 2003; Muggeo, 2003) is that the number
of segments K is a hyperparameter and needs to be chosen prior to model fitting. This issue can
be resolved externally with any model selection criterion (Davis et al., 2006). However, due to our
differentiable model formulation, future work may be able to solve the model selection task internally
within a single objective function that is optimized with gradient descent, e.g., using the differentiable
architecture search approach of Liu et al. (2019).

Another limitation that we inherit from classical segmented models is that all K segments are treated
as distinct regimes with their own parameter vectors θk. For example, if the data-generating process
switches back and forth multiple times between only two distinct regimes, a segmented model has
to learn the same parameter vector every time the regime switches. During training, we can favor
solutions with reused segment parameters by adding a regularization term to the loss function that
penalizes a high rank of the segment parameter matrix θ = [θ1, ..., θK ]. If we wanted to control
the number of distinct regimes separately, we could learn a codebook of C < K distinct segment
parameters and a mapping from segment identifiers to codebook entries f : {1, ...,K} → {1, ..., C},
e.g., using the vector quantization approach of van den Oord et al. (2017). This is possible only
because our model is fully differentiable and can easily be augmented with such components.

At last, we consider the application of our approach for discrete representation learning under
powerful deep data-generating processes sketched in Section 5.4 a fruitful direction for future work.
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A WARPING FUNCTIONS FOR SEGMENTATION

In this section, we provide a technical notion of representation of segmentation functions and show
that TSP-based warping functions can represent segmentation functions in this sense.
Definition 1. The warping function γ : [0, 1] −→ [0, 1] exactly represents the segmentation
function ζ : {1, ..., T} −→ {1, ...,K} with respect to the unit grid (ut)

T
t=1 if

γ(ut) =
k − 1

K − 1
⇔ ζ(t) = k for all t. (14)

Exact representation entails that the predictors ζ̂t defined in Equation 6 satisfy ζ̂t = ζ(t) for all t.
Clearly, exact representation can only be achieved with piecewise-constant warping functions. We
have the following result:
Lemma 1. For every segmentation function ζ, there is a TSP-based warping function γTSP that
exactly represents ζ.

Proof. We place the K − 1 modes mk of γTSP on the change points τk (projected to the unit grid)
and choose a window size w not larger than the resolution of the grid. The power n > 1 can be
chosen freely. Formally, let τk ∈ {2, ..., T} be the k-th change point, such that ζ(τk − 1) = k and
ζ(τk) = k + 1. We set mk := (uτk + uτk−1)/2 for all k = 1, ...,K − 1, and w := 1/(T − 1).

In practice, the segmentation function ζ is unknown and the modes m = (m1, ...,mK−1) must be
estimated in an unsupervised way. For effective training with gradient descent, the window size
should initially be larger than the sampling resolution of the unit grid, w > 1/(T − 1), to allow
the loss to backpropagate across segment boundaries. The window size can be interpreted as the
receptive field of the individual TSP components. The width can be tapered down to w ≤ 1/(T − 1)
over the training epochs to obtain a warping function that exactly represents a segmentation function.
For simplicity, we do not follow this strategy in our experiments, but instead round the predictors ζ̂t
to the nearest integers, whenever we need hard segmentations.

B DETAILS ON THE EXPERIMENTS

B.1 POISSON REGRESSION

Data. We obtained official data on COVID-19 cases in Germany from Robert Koch Institute (RKI),
the German public health institute. The data is publicly available under an open data license.4 We
provide a copy used for the experiments in this work in the supplementary material. For every day in
the study period, we aggregate all new cases reported on that day. Due to the delays between the
actual infection of a patient and the time the infection is reported to the health authorities, the new
cases reported on a specific day contain new infections from several days before.

Segmented Poisson regression model. Poisson regression is a GLM for count data, where the
data generating process is modeled by a Poisson distribution and the linear predictor is transformed
with the logarithmic link function (McCullagh & Nelder, 1989).

Let xt denote the number of newly reported cases at time t. Furthermore, let zTu
t , zWe

t , zTh
t , zFr

t , zSa
t

and zSu
t denote binary day-of-week indicators. If the time step t is a Monday, all indicators are 0. For

all other days, exactly one indicator is set to 1. We use the following vector of covariates, including a
bogus covariate 1 for the bias terms:

zt = [1, t, zTu
t , z

We
t , zTh

t , z
Fr
t , z

Sa
t , z

Su
t ] (15)

In our segmented Poisson regression model, the bias terms and the daily growth rates (the parameters
associated with the covariates 1 and t) differ in every segment, while the parameters for the day-of-
week indicators are tied across all segments (they are independent of segment k):

θk = [θk,1, θk,2, θ
Tu, θWe, θTh, θFr, θSa, θSu] (16)

4“Fallzahlen in Deutschland” by Robert Koch Institut (RKI), open data license “Data licence Germany –
attribution – Version 2.0” (dl-de/by-2-0), link: https://www.arcgis.com/home/item.html?id=
f10774f1c63e40168479a1feb6c7ca74
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Figure 6: Ablation study for TSPb hyperparameters (segmented Poisson regression); default values
for the fixed hyperparameters are: 2048 integer epochs, w = .5, and n = 16, respectively.

In this model, the bias terms θk,1 control the base rates of newly reported cases on a Monday within
every segment k, while the parameters for the day-of-week indicators are global scaling factors that
control the relative increase or decrease of the base rates on the other days-of-week with respect to
Monday. Overall, we have the following segmented Poisson regression model:

x̂t = E[xt | zt] := exp

θk,1 + θk,2 · t+
∑

day∈{Tu,We,Th,Fr,Sa,Su}

θdayzday
t

 , if ζ(t) = k (17)

The training objective is to minimize the negative log-likelihood under a Poisson distribution:

L(ζ, θ) = −
∑
t

log Poisson(xt | x̂t) (18)

In our TSP-based warping functions (TSPb), we set the window size to w = .5 and the power to
n = 16. In the CPA-based warping functions (CPAb) of Weber et al. (2019), we set the dimensionality
of the underlying velocity fields to K, the number of segments to learn. This choice makes the
function family flexible enough to approximate warping functions with K − 1 discrete steps, using
the minimum number of parameters necessary. Note that the “nonparametric” warping functions (NP)
of Lohit et al. (2019) have T − 1 parameters, where T is the sequence length. We perform training
with ADAM with a learning rate of η = 0.01 for a total of 10000 training epochs. In the last 2048
epochs, we round the predictors ζ̂t to the nearest integers to obtain a hard segmentation function ζ(t).
We perform 10 restarts of the training procedure with random initialization and keep the model with
the best fit for evaluation (highest log-likelihood).

Competitor. We use the reference implementation of Muggeo (2003) from the R segmented
package. As pointed out in Section 1, our segmented model architecture learns a segmentation of
the index set t = 1, ..., T . The segmented models by Muggeo (2003) learn a segmentation in the
domain of one (or more) of the covariates. Since we use the index t as a covariate, we can configure
the algorithm of Muggeo (2003) to segment the covariate t, which makes the two models equivalent.

Ablation study. Figure 6 shows the goodness-of-fit (log-likelihood, the higher the better) obtained
with our relaxed segmented model (TSPb) using different settings of the hyperparameters. The
performance is quite robust with respect to the width and power of the TSP components. The
number of integer epochs (with hard segmentations) has impact on the estimation performance. We
hypothesize that the learning problem is simpler with soft segmentations, so that gradient descent
moves towards a better region of the loss function. During integer epochs, the parameters within a
segment are fine-tuned within the region found during the soft epochs.

B.2 CHANGE POINT DETECTION

Data generating process. We follow scenario 1 of Arlot et al. (2019) to sample N = 500 random
sequences of length T = 1000 with a total of 10 change points (K = 11 segments). The change
points are located at time steps 100, 130, 220, 320, 370, 520, 620, 740, 790, and 870. We define
a change point as the beginning of a new segment. The data generating process is described in
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Algorithm 1 Data generating process of Arlot et al. (2019).
for all sequences n = 1, ..., N do

for all segments k = 1, ...,K do
sample a distribution pnk uniformly from P \ {pn,k−1}
sample xnt

iid∼ pnk for all time steps t in segment k
end for

end for

Algorithm 1, where P is a set of predefined probability distributions. For scenario 1, we have

P := {Binom(n = 10, p = 0.2),NegBinom(n = 3, p = 0.7),

Hypergeom(M = 10, n = 5, N = 2),N (µ = 2.5, σ2 = 0.25),

Γ(a = 0.5, b = 5),Weibull(a = 2, b = 5),Pareto(a = 3, b = 1.5)},
(19)

where a is the shape parameter and b is the scale parameter in the case of Γ, Weibull, and Pareto.
For every algorithm in the evaluation, we create a new sample of 500 sequences.

Segmented normal model. We employ our relaxed segmented model with the assumption that the
data generating process within each segment is a normal distribution with its own mean and variance,

xt
iid∼N (µk, σ

2
k), if ζ(t) = k. (20)

With this design choice, we can detect changes in the mean and variance between the segments, but no
other distributional characteristics. The training objective is to minimize the negative log-likelihood:

L(ζ, θ) = −
∑
t

logN (xt | µζ(t), σ2
ζ(t)) (21)

We ensure a positive variance throughout training by estimating the logarithm of the variance, i.e.,
the parameter vector within a segment k is given by θk = [µk, log

(
σ2
k

)
].

For TSPb, we set the window size to w = .125 and the power to n = 16. For CPAb, we set the
dimensionality of the velocity field to K. NP has no hyperparameters. We perform training with
ADAM with a learning rate of η = 0.1 for a total of 300 epochs with 100 integer epochs. We perform
10 restarts with random initialization and keep the model with the best fit for evaluation.

Competitors. For the experiments with the dynamic programming approaches (DP ≥ `), we use
the implementation of Truong et al. (2020) from the Python ruptures module, using the normal
cost function with a minimum segment size of `, 10 change points, and no subsampling. For the
binary segmentation approach (BinSeg) by Scott & Knott (1974) and the Pruned Exact Linear Time
(PELT) method of Killick et al. (2012), we use the R changepoint package (cpt.meanvar,
normal test statistic, MBIC penalty (Zhang & Siegmund, 2007), minimum segment size 2, maximum
number of change points 100). The experiments with the E-divisive approach (Matteson & James,
2014) were conducted with the R ecp package (e.divisive, significance level .05, 199 random
permutations, minimum, minimum segment size 2, moment index 1). For the experiments with the
kernel-based approaches KCP (Arlot et al., 2019) and KCpE (Harchaoui & Cappé, 2007), we use
the implementation from the Python chapydette package kindly provided by Jones & Harchaoui
(2020), with the default Gaussian-Euclidean kernel, bandwidth 0.1, and minimum segment size 2.

Performance measures. We use the same evaluation measures as Arlot et al. (2019) and follow
their definitions. Let ζ and ζ ′ be two segmentations of a sequence of length T . Let τ and τ ′ be the
corresponding sets of change points. The Hausdorff distance is the largest distance between any
change point from one segmentation and its nearest neighbor from the other segmentation:

dhdf(ζ, ζ
′) := max

{
max

1≤i≤|τ |
min

1≤j≤|τ ′|
|τi − τ ′j |, max

1≤j≤|τ |
min

1≤i≤|τ ′|
|τi − τ ′j |,

}
(22)
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Table 3: Ablation study for TSPb hyperparameters (change detection).

power n width w dhdf (mean±std) dfro (mean±std)

16 0.5 78.8± 31.9 2.4± 0.3
16 0.25 83.3± 35.1 2.3± 0.3
16 0.125 82.5± 32.3 2.3± 0.3
16 0.0625 85.0± 36.1 2.4± 0.3

4 0.125 83.0± 34.4 2.4± 0.3
8 0.125 79.5± 31.3 2.3± 0.4

16 0.125 82.5± 32.3 2.3± 0.3
32 0.125 80.4± 30.1 2.3± 0.3

The Frobenius distance between two segmentations (Lajugie et al., 2014) is defined as the Frobenius
distance between the rescaled equivalence matrix representations of the segmentations:

dfro(ζ, ζ ′) := ‖Mζ −Mζ′‖F , (23)

where Mζ
t,t′ =

1ζ(t)=ζ(t′)∑
t′′ 1ζ(t)=ζ(t′′)

. (24)

It penalizes over-segmentation more strongly than the Hausdorff distance.

Ablation study. We experimented with different values for the TSPb hyperparameters; Table 3
shows the results. The detection performance is robust towards the choice of hyperparameters.

B.3 CONCEPT DRIFT

Benchmark data. The insect stream benchmark is described in detail in Souza et al. (2020). The
five data streams with balanced class distributions that we consider here have the following lengths.
incremental: 57,018; abrupt: 52,848; incremental-gradual: 24,150; incremental-abrupt-reoccurring:
79,986; incremental-reoccurring: 79,986 (sic).

Softmax regression model. Softmax regression is a standard multi-class classification model,
where the data generating process is modeled by a categorical distribution with probabilities computed
from the softmax function. Let (xt, yt) denote a training instance from the insect stream benchmark,
where xt ∈ {1, ..., C} is the target class label and yt is the raw observation. We learn a more
informative representation zt of the observation yt by passing it through a linear layer with output
dimension D = 8, followed by a ReLU nonlinearity. We denote this feature transformation by
zt := fφ(yt), where φ are the learnable parameters of the transformation. The covariates zt are used
within a segmented softmax regression model to predict the targets xt,

xt | zt
iid∼ Categorical(Softmax(θkzt)), if ζ(t) = k. (25)

In this model, θk ∈ RC×D is a matrix, so that θkzt ∈ RC contains unnormalized classification scores
for every class c in segment k. The softmax function transforms the scores into normalized class
probabilities. The feature transformation fφ is shared across all segments, while the parameters
of the linear predictor θ change from segment to segment. With this design, we learn a feature
transformation that is useful for the classification task in general, while taking concept drift in the
label associations into account. The training objective is to minimize the negative log-likelihood
under the categorical distribution, more commonly known as the cross-entropy loss

L(ζ, θ, φ) = −
∑
t

log Categorical(xt | Softmax(θζ(t)zt)) (26)

= −
∑
t

([
θζ(t)zt

]
xt
− log

∑
c

exp
[
θζ(t)zt

]
c

)
. (27)

We employ TSPb warping functions with window size w = .125 and power n = 16. We perform
training with ADAM with a learning rate of η = .1 for a total of 300 epochs, with 100 integer epochs.
We perform 10 restarts with random initialization and keep the model with the best fit for evaluation.
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B.4 DISCRETE REPRESENTATION LEARNING

Piecewise constant model. We assume the piecewise constant, deterministic DGP

xt := θk, if ζ(t) = k, (28)

and minimize the mean squared error of the output

L(ζ, θ) =
∑
t

‖xt − θk‖2. (29)

We fit our relaxed segmented model with TSPb warping functions (K = 10 segments) with window
size w = .125 and power n = 16. We perform training with ADAM with a learning rate of η = .1 for
a total of 300 epochs with 100 integer epochs. We perform 10 restarts with random initialization and
keep the model with the best fit for evaluation.
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