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Abstract

Despite the great advances made by deep learn-
ing in many machine learning problems, there
is a relative dearth of deep learning approaches
for anomaly detection. Those approaches which
do exist involve networks trained to perform a
task other than anomaly detection, namely gener-
ative models or compression, which are in turn
adapted for use in anomaly detection; they are
not trained on an anomaly detection based objec-
tive. In this paper we introduce a new anomaly
detection method—Deep Support Vector Data
Description—, which is trained on an anomaly
detection based objective. The adaptation to the
deep regime necessitates that our neural network
and training procedure satisfy certain properties,
which we demonstrate theoretically. We show
the effectiveness of our method on MNIST and
CIFAR-10 image benchmark datasets as well as
on the detection of adversarial examples of GT-
SRB stop signs.

1. Introduction
Anomaly detection (AD) (Chandola et al., 2009; Aggarwal,
2016) is the task of discerning unusual samples in data. Typ-
ically, this is treated as an unsupervised learning problem
where the anomalous samples are not known a priori and
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it is assumed that the majority of the training dataset con-
sists of “normal” data (here and elsewhere the term “normal”
means not anomalous and is unrelated to the Gaussian dis-
tribution). The aim then is to learn a model that accurately
describes “normality.” Deviations from this description are
then deemed to be anomalies. This is also known as one-
class classification (Moya et al., 1993). AD algorithms are
often trained on data collected during the normal operating
state of a machine or system for monitoring (Lavin & Ah-
mad, 2015). Other domains include intrusion detection for
cybersecurity (Garcia-Teodoro et al., 2009), fraud detection
(Phua et al., 2005), and medical diagnosis (Salem et al.,
2013; Schlegl et al., 2017). As with many fields, the data in
these domains is growing rapidly in size and dimensionality
and thus we require effective and efficient ways to detect
anomalies in large quantities of high-dimensional data.

Classical AD methods such as the One-Class SVM (OC-
SVM) (Schölkopf et al., 2001) or Kernel Density Estimation
(KDE) (Parzen, 1962), often fail in high-dimensional, data-
rich scenarios due to bad computational scalability and the
curse of dimensionality. To be effective, such shallow meth-
ods typically require substantial feature engineering. In
comparison, deep learning (LeCun et al., 2015; Schmidhu-
ber, 2015) presents a way to learn relevant features automat-
ically, with exceptional successes over classical methods
(Collobert et al., 2011; Hinton et al., 2012), especially in
computer vision (Krizhevsky et al., 2012; He et al., 2016).
How to transfer the benefits of deep learning to AD is less
clear, however, since finding the right unsupervised deep
objective is hard (Bengio et al., 2013). Current approaches
to deep AD have shown promising results (Hawkins et al.,
2002; Sakurada & Yairi, 2014; Xu et al., 2015; Erfani et al.,
2016; Andrews et al., 2016; Chen et al., 2017), but none
of these methods are trained by optimizing an AD based
objective function and typically rely on reconstruction error
based heuristics.

In this work we introduce a novel approach to deep AD
inspired by kernel-based one-class classification and mini-
mum volume estimation. Our method, Deep Support Vector
Data Description (Deep SVDD), trains a neural network
while minimizing the volume of a hypersphere that encloses
the network representations of the data (see Figure 1). Mini-
mizing the volume of the hypersphere forces the network to
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Figure 1. Deep SVDD learns a neural network transformation φ(· ;W) with weights W from input space X ⊆ Rd to output space
F ⊆ Rp that attempts to map most of the data network representations into a hypersphere characterized by center c and radius R of
minimum volume. Mappings of normal examples fall within, whereas mappings of anomalies fall outside the hypersphere.

extract the common factors of variation since the network
must closely map the data points to the center of the sphere.

2. Related Work
Before introducing Deep SVDD we briefly review kernel-
based one-class classification and present existing deep ap-
proaches to AD.

2.1. Kernel-based One-Class Classification

Let X ⊆ Rd be the data space. Let k : X × X →
[0,∞) be a PSD kernel, Fk it’s associated RKHS, and
φk : X → Fk its associated feature mapping. So k(x, x̃) =
〈φk(x), φk(x̃)〉Fk

for all x, x̃ ∈ X where 〈· , ·〉Fk
is the

dot product in Hilbert space Fk (Aronszajn, 1950). We
review two kernel machine approaches to AD.

Probably the most prominent example of a kernel-based
method for one-class classification is the One-Class SVM
(OC-SVM) (Schölkopf et al., 2001). The objective of the
OC-SVM finds a maximum margin hyperplane in feature
space,w ∈ Fk, that best separates the mapped data from the
origin. Given a dataset Dn = {x1, . . . ,xn} with xi ∈ X ,
the OC-SVM solves the primal problem

min
w,ρ,ξ

1

2
‖w‖2Fk

− ρ+ 1

νn

n∑
i=1

ξi

s.t. 〈w, φk(xi)〉Fk
≥ ρ− ξi, ξi ≥ 0, ∀i.

(1)

Here ρ is the distance from the origin to hyperplane w.
Nonnegative slack variables ξ = (ξ1, . . . , ξn)

ᵀ allow the
margin to be soft, but violations ξi get penalized. ‖w‖2Fk

is a regularizer on the hyperplane w where ‖ · ‖Fk
is the

norm induced by 〈· , ·〉Fk
. The hyperparameter ν ∈ (0, 1]

controls the trade-off in the objective. Separating the data
from the origin in feature space translates into finding a
halfspace in which most of the data lie and points lying
outside this halfspace, i.e. 〈w, φk(x)〉Fk

< ρ, are deemed

to be anomalous.

Support Vector Data Description (SVDD) (Tax & Duin,
2004) is a technique related to OC-SVM where a hyper-
sphere is used to separate the data instead of a hyperplane.
The objective of SVDD is to find the smallest hypersphere
with center c ∈ Fk and radius R > 0 that encloses the
majority of the data in feature space Fk. The SVDD primal
problem is given by

min
R,c,ξ

R2 +
1

νn

∑
i

ξi

s.t. ‖φk(xi)− c‖2Fk
≤ R2 + ξi, ξi ≥ 0, ∀i.

(2)

Again, slack variables ξi ≥ 0 allow a soft boundary and
hyperparameter ν ∈ (0, 1] controls the trade-off between
penalties ξi and the volume of the sphere. Points which fall
outside the sphere, i.e. ‖φk(x)− c‖2Fk

> R2, are deemed
anomalous.

The OC-SVM and SVDD are closely related. Both methods
can be solved by their respective duals, which are quadratic
programs and can be solved via a variety of methods, e.g.
sequential minimal optimization (Platt, 1998). In the case
of the widely used Gaussian kernel, the two methods are
equivalent and are asymptotically consistent density level
set estimators (Tsybakov, 1997; Vert & Vert, 2006). Formu-
lating the primal problems with hyperparameter ν ∈ (0, 1]
as in (1) and (2) is a handy choice of parameterization since
ν ∈ (0, 1] is (i) an upper bound on the fraction of outliers,
and (ii) a lower bound on the fraction of support vectors
(points that are either on or outside the boundary). This re-
sult is known as the ν-property (Schölkopf et al., 2001) and
allows one to incorporate a prior belief about the fraction of
outliers present in the training data into the model.

Apart from the necessity to perform explicit feature en-
gineering (Pal & Foody, 2010), another drawback of the
aforementioned methods is their poor computational scal-
ing due to the construction and manipulation of the kernel
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matrix. Kernel-based methods scale at least quadratically in
the number of samples (Vempati et al., 2010) unless some
sort of approximation technique is used (Rahimi & Recht,
2007). Moreover, prediction with kernel methods requires
storing support vectors which can require large amounts of
memory. As we will see, Deep SVDD does not suffer from
these limitations.

2.2. Deep Approaches to Anomaly Detection

Deep learning (LeCun et al., 2015; Schmidhuber, 2015) is
a subfield of representation learning (Bengio et al., 2013)
that utilizes model architectures with multiple processing
layers to learn data representations with multiple levels of
abstraction. Multiple levels of abstraction allow for the
representation of a rich space of features in a very compact
and distributed form. Deep (multi-layered) neural networks
are especially well-suited for learning representations of
data that are hierarchical in nature, such as images or text.

We categorize approaches that try to leverage deep learn-
ing for AD into either “mixed” or “fully deep.” In mixed
approaches, representations are learned separately in a pre-
ceding step before these representations are then fed into
classical (shallow) AD methods like the OC-SVM. Fully
deep approaches, in contrast, employ the representation
learning objective directly for detecting anomalies.

With Deep SVDD, we introduce a novel, fully deep ap-
proach to unsupervised AD. Deep SVDD learns to extract
the common factors of variation of the data distribution by
training a neural network to fit the network outputs into a
hypersphere of minimum volume. In comparison, virtually
all existing deep AD approaches rely on the reconstruction
error — either in mixed approaches for just learning rep-
resentations, or directly for both representation learning as
well as detection.

Deep autoencoders (Hinton & Salakhutdinov, 2006) (of var-
ious types) are the predominant approach used for deep
AD. Autoencoders are neural networks which attempt to
learn the identity function while having an intermediate
representation of reduced dimension (or some sparsity regu-
larization) serving as a bottleneck to induce the network to
extract salient features from some dataset. Typically these
networks are trained to minimize reconstruction error, i.e.
‖x− x̂‖2. Therefore these networks should be able to ex-
tract the common factors of variation from normal samples
and reconstruct them accurately, while anomalous samples
do not contain these common factors of variation and thus
cannot be reconstructed accurately. This allows for the use
of autoencoders in mixed approaches (Xu et al., 2015; An-
drews et al., 2016; Erfani et al., 2016; Sabokrou et al., 2016),
by plugging the learned embeddings into classical AD meth-
ods, but also in fully deep approaches, by directly employing
the reconstruction error as an anomaly score (Hawkins et al.,

2002; Sakurada & Yairi, 2014; An & Cho, 2015; Chen et al.,
2017). Some variants of the autoencoder used for the pur-
pose of AD include denoising autoencoders (Vincent et al.,
2008; 2010), sparse autoencoders (Makhzani & Frey, 2013),
variational autoencoders (VAEs) (Kingma & Welling, 2013),
and deep convolutional autoencoders (DCAEs) (Masci et al.,
2011; Makhzani & Frey, 2015), where the last variant is
predominantly used in AD applications with image or video
data (Seeböck et al., 2016; Richter & Roy, 2017).

Autoencoders have the objective of dimensionality reduc-
tion and do not target AD directly. The main difficulty of
applying autoencoders for AD is given in choosing the right
degree of compression, i.e. dimensionality reduction. If
there was no compression, an autoencoder would just learn
the identity function. In the other edge case of information
reduction to a single value, the mean would be the optimal
solution. That is, the “compactness” of the data represen-
tation is a model hyperparameter and choosing the right
balance is hard due to the unsupervised nature and since
the intrinsic dimensionality of the data is often difficult to
estimate (Bengio et al., 2013). In comparison, we include
the compactness of representation into our Deep SVDD
objective by minimizing the volume of a data-enclosing
hypersphere and thus target AD directly.

Apart from autoencoders, Schlegl et al. (2017) have recently
proposed a novel deep AD method based on Generative Ad-
versarial Networks (GANs) (Goodfellow et al., 2014) called
AnoGAN. In this method one first trains a GAN to generate
samples according to the training data. Given a test point
AnoGAN tries to find the point in the generator’s latent
space that generates the sample closest to the test input con-
sidered. Intuitively, if the GAN has captured the distribution
of the training data then normal samples, i.e. samples from
the distribution, should have a good representation in the
latent space and anomalous samples will not. To find the
point in latent space, Schlegl et al. (2017) perform gradient
descent in latent space keeping the learned weights of the
generator fixed. AnoGAN finally defines an anomaly score
also via the reconstruction error. Similar to autoencoders, a
main difficulty of this generative approach is the question
of how to regularize the generator for compactness.

3. Deep SVDD
In this section we introduce Deep SVDD, a method for
deep one-class classification. We present the Deep SVDD
objective, its optimization, and theoretical properties.

3.1. The Deep SVDD Objective

With Deep SVDD, we build on the kernel-based SVDD and
minimum volume estimation by finding a data-enclosing
hypersphere of smallest size. However, with Deep SVDD
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we learn useful feature representations of the data together
with the one-class classification objective. To do this we
employ a neural network that is jointly trained to map the
data into a hypersphere of minimum volume.

For some input space X ⊆ Rd and output space F ⊆ Rp,
let φ(· ;W) : X → F be a neural network with L ∈ N
hidden layers and set of weights W = {W 1, . . . ,WL}
whereW ` are the weights of layer ` ∈ {1, . . . , L}. That is,
φ(x;W) ∈ F is the feature representation of x ∈ X given
by network φ with parametersW . The aim of Deep SVDD
then is to jointly learn the network parametersW together
with minimizing the volume of a data-enclosing hypersphere
in output space F that is characterized by radius R > 0 and
center c ∈ F which we assume to be given for now. Given
some training data Dn = {x1, . . . ,xn} on X , we define
the soft-boundary Deep SVDD objective as

min
R,W

R2 +
1

νn

n∑
i=1

max{0, ‖φ(xi;W)− c‖2 −R2}

+
λ

2

L∑
`=1

‖W `‖2F .
(3)

As in kernel SVDD, minimizing R2 minimizes the volume
of the hypersphere. The second term is a penalty term for
points lying outside the sphere after being passed through
the network, i.e. if its distance to the center ‖φ(xi;W) −
c‖ is greater than radius R. Hyperparameter ν ∈ (0, 1]
controls the trade-off between the volume of the sphere
and violations of the boundary, i.e. allowing some points
to be mapped outside the sphere. We prove in Section
3.3 that the ν-parameter in fact allows us to control the
proportion of outliers in a model similar to the ν-property
of kernel methods mentioned previously. The last term is a
weight decay regularizer on the network parametersW with
hyperparameter λ > 0, where ‖ · ‖F denotes the Frobenius
norm.

Optimizing objective (3) lets the network learn parameters
W such that data points are closely mapped to the center c
of the hypersphere. To achieve this the network must extract
the common factors of variation of the data. As a result,
normal examples of the data are closely mapped to center
c, whereas anomalous examples are mapped further away
from the center or outside of the hypersphere. Through
this we obtain a compact description of the normal class.
Minimizing the size of the sphere enforces this learning
process.

For the case where we assume most of the training data Dn
is normal, which is often the case in one-class classification
tasks, we propose an additional simplified objective. We

define the One-Class Deep SVDD objective as

min
W

1

n

n∑
i=1

‖φ(xi;W)− c‖2 + λ

2

L∑
`=1

‖W `‖2F . (4)

One-Class Deep SVDD simply employs a quadratic loss
for penalizing the distance of every network representation
φ(xi;W) to c ∈ F . The second term again is a network
weight decay regularizer with hyperparameter λ > 0. We
can think of One-Class Deep SVDD also as finding a hy-
persphere of minimum volume with center c. But unlike
in soft-boundary Deep SVDD, where the hypersphere is
contracted by penalizing the radius directly and the data
representations that fall outside the sphere, One-Class Deep
SVDD contracts the sphere by minimizing the mean dis-
tance of all data representations to the center. Again, to map
the data (on average) as close to center c as possible, the
neural network must extract the common factors of variation.
Penalizing the mean distance over all data points instead
of allowing some points to fall outside the hypersphere is
consistent with the assumption that the majority of training
data is from one class.

For a given test point x ∈ X , we can naturally define an
anomaly score s for both variants of Deep SVDD by the
distance of the point to the center of the hypersphere, i.e.

s(x) = ‖φ(x;W∗)− c‖2, (5)

whereW∗ are the network parameters of a trained model.
For soft-boundary Deep SVDD, we can adjust this score by
subtracting the final radiusR∗ of the trained model such that
anomalies (points with representations outside the sphere)
have positive scores, whereas inliers have negative scores.
Note that the network parametersW∗ (and R∗) completely
characterize a Deep SVDD model and no data must be
stored for prediction, thus endowing Deep SVDD a very low
memory complexity. This also allows fast testing by simply
evaluating the network φ with learned parameters W∗ at
some test point x ∈ X which usually is just a concatenation
of simple functions.

We address Deep SVDD optimization and selection of the
hypersphere center c ∈ F in the following two subsections.

3.2. Optimization of Deep SVDD

We use stochastic gradient descent (SGD) and its variants
(e.g., Adam (Kingma & Ba, 2014)) to optimize the parame-
tersW of the neural network in both Deep SVDD objectives
using backpropagation. Training is carried out until conver-
gence to a local minimum. Using SGD allows Deep SVDD
to scale well with large datasets as its computational com-
plexity scales linearly in the number of training batches and
each batch can be processed in parallel (e.g. by processing
on multiple GPUs). SGD optimization also enables iterative
or online learning.
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Since the network parameters W and radius R generally
live on different scales, using one common SGD learning
rate may be inefficient for optimizing the soft-boundary
Deep SVDD. Instead, we suggest optimizing the network
parameters W and radius R alternately in an alternating
minimization/block coordinate descent approach. That is,
we train the network parametersW for some k ∈ N epochs
while the radius R is fixed. Then, after every k-th epoch,
we solve for radius R given the data representations from
the network using the network parametersW of the latest
update. R can be easily solved for via line search.

3.3. Properties of Deep SVDD

For an improperly formulated network or hypersphere center
c, the Deep SVDD can learn trivial, uninformative solutions.
Here we theoretically demonstrate some network proper-
ties which will yield trivial solutions (and thus must be
avoided). We then prove the ν-property for soft-boundary
Deep SVDD.

In the following let Jsoft(W, R) and JOC(W) be the soft-
boundary and One-Class Deep SVDD objective functions
as defined in (3) and (4). First, we show that including the
hypersphere center c ∈ F as a free optimization variable
leads to trivial solutions for both objectives.

Proposition 1 (All-zero-weights solution). LetW0 be the
set of all-zero network weights, i.e., W ` = 0 for every
W ` ∈ W0. For this choice of parameters, the network maps
any input to the same output, i.e., φ(x;W0) = φ(x̃;W0) =:
c0 ∈ F for any x, x̃ ∈ X . Then, if c = c0, the optimal
solution of Deep SVDD is given byW∗ =W0 and R∗ = 0.

Proof. For every configuration (W, R) we have that
Jsoft(R,W) ≥ 0 and JOC(W) ≥ 0 respectively. As the
output of the all-zero-weights network φ(x;W0) is constant
for every input x ∈ X (all parameters in each network
unit are zero and thus the linear projection in each network
unit maps any input to zero), and the center of the hyper-
sphere is given by c = φ(x;W0), all errors in the empirical
sums of the objectives become zero. Thus, R∗ = 0 and
W∗ = W0 are optimal solutions since Jsoft(W∗, R∗) = 0
and JOC(W∗) = 0 in this case.

Stated less formally, Proposition 1 implies that if we include
the hypersphere center c as a free variable in the SGD opti-
mization, Deep SVDD would likely converge to the trivial
solution (W∗, R∗, c∗) = (W0, 0, c0). We call such a solu-
tion, where the network learns weights such that the network
produces a constant function mapping to the hypersphere
center, “hypersphere collapse” since the hypersphere radius
collapses to zero. Proposition 1 also implies that we require
c 6= c0 when fixing c in output space F because other-
wise a hypersphere collapse would again be possible. For a

convolutional neural network (CNN) with ReLU activation
functions, for example, this would require c 6= 0. We found
empirically that fixing c as the mean of the network rep-
resentations that result from performing an initial forward
pass on some training data sample to be a good strategy.
Although we obtained similar results in our experiments
for other choices of c (making sure c 6= c0), we found that
fixing c in the neighborhood of the initial network outputs
made SGD convergence faster and more robust.

Next, we identify two network architecture properties, that
would also enable trivial hypersphere collapse solutions.
Proposition 2 (Bias terms). Let c ∈ F be any fixed hy-
persphere center. If there is any hidden layer in network
φ(· ;W) : X → F having a bias term, there exists an op-
timal solution (R∗,W∗) of the Deep SVDD objectives (3)
and (4) with R∗ = 0 and φ(x;W∗) = c for every x ∈ X .

Proof. Assume layer ` ∈ {1, . . . , L} with weightsW ` also
has a bias term b`. For any input x ∈ X , the output of layer
` is then given by

z`(x) = σ`(W ` · z`−1(x) + b`),

where “·” denotes a linear operator (e.g., matrix multiplica-
tion or convolution), σ`(·) is the activation of layer `, and
the output z`−1 of the previous layer `− 1 depends on in-
put x by the concatenation of previous layers. Then, for
W ` = 0, we have that z`(x) = σ`(b`), i.e., the output
of layer ` is constant for every input x ∈ X . Therefore,
the bias term b` (and the weights of the subsequent layers)
can be chosen such that φ(x;W∗) = c for every x ∈ X
(assuming c is in the image of the network as a function of
b` and the subsequent parametersW `+1, . . . ,WL). Hence,
selectingW∗ in this way results in an empirical term of zero
and choosing R∗ = 0 gives the optimal solution (ignoring
the weight decay regularization terms for simplicity).

Put differently, Proposition 2 implies that networks with
bias terms can easily learn any constant function, which is
independent of the input x ∈ X . It follows that bias terms
should not be used in neural networks with Deep SVDD
since the network can learn the constant function mapping
directly to the hypersphere center, leading to hypersphere
collapse.1

Proposition 3 (Bounded activation functions). Consider a
network unit having a monotonic activation function σ(·)
that has an upper (or lower) bound with supz σ(z) 6= 0 (or
infz σ(z) 6= 0). Then, for a set of unit inputs {z1, . . . ,zn}
that have at least one feature that is positive or negative
for all inputs, the non-zero supremum (or infimum) can be
uniformly approximated on the set of inputs.

1Proposition 2 also explains why autoencoders with bias terms
are vulnerable to converge to a constant mapping onto the mean,
which is the optimal constant solution of the mean squared error.
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Proof. W.l.o.g. consider the case of σ being upper bounded
by B := supz σ(z) 6= 0 and feature k being positive for all
inputs, i.e. z(k)i > 0 for every i = 1, . . . , n. Then, for every
ε > 0, one can always choose the weight of the k-th element
wk large enough (setting all other network unit weights to
zero) such that supi |σ(wk z

(k)
i )−B| < ε.

Proposition 3 simply says that a network unit with bounded
activation function can be saturated for all inputs having
at least one feature with common sign thereby emulating
a bias term in the subsequent layer, which again leads to
a hypersphere collapse. Therefore, unbounded activation
functions (or functions only bounded by 0) such as the ReLU
should be preferred in Deep SVDD to avoid a hypersphere
collapse due to “learned” bias terms.

To summarize the above analysis: the choice of hypersphere
center c must be something other than the all-zero-weights
solution and only neural networks without bias terms or
bounded activation functions should be used in Deep SVDD
to prevent a hypersphere collapse solution. Lastly, we prove
that the ν-property also holds for soft-boundary Deep SVDD
which allows to include a prior assumption on the number
of anomalies assumed to be present in the training data.

Proposition 4 (ν-property). Hyperparameter ν ∈ (0, 1] in
the soft-boundary Deep SVDD objective in (3) is an upper
bound on the fraction of outliers and a lower bound on the
fraction of samples being outside or on the boundary of the
hypersphere.

Proof. Define di = ‖φ(xi;W) − c‖2 for i = 1, . . . , n.
W.l.o.g. assume d1 ≥ · · · ≥ dn. The number of outliers is
then given by nout = |{i : di > R2}| and we can write the
soft-boundary objective Jsoft (in radius R) as

Jsoft(R) = R2 − nout

νn
R2 =

(
1− nout

νn

)
R2.

That is, radius R is decreased as long as nout ≤ νn holds
and decreasing R gradually increases nout. Thus, nout

n ≤ ν
must hold in the optimum, i.e. ν is an upper bound on the
fraction of outliers, and the optimal radius R∗ is given for
the largest nout for which this inequality still holds. Finally,
we have that R∗2 = di for i = nout + 1 since radius R
is minimal in this case and points on the boundary do not
increase the objective. Hence, we also have |{i : di ≥
R∗2}| ≥ nout + 1 ≥ νn.

4. Experiments
We evaluate Deep SVDD on the well-known MNIST (Le-
Cun et al., 2010) and CIFAR-10 (Krizhevsky & Hinton,
2009) datasets. Adversarial attacks (Goodfellow et al., 2015)
have seen a lot attention recently and here we examine the
possibility of using anomaly detection to detect such attacks.

To do this we apply Boundary Attack (Brendel et al., 2018)
to the GTSRB stop signs dataset (Stallkamp et al., 2011).
We compare our method against a diverse collection of state-
of-the-art methods from different paradigms. We use image
data since they are usually high-dimensional and moreover
allow for a qualitative visual assessment of detected anoma-
lies by human observers. Using classification datasets to
create one-class classification setups allows us to evaluate
the results quantitatively via AUC measure by using the
ground truth labels in testing (cf. Erfani et al., 2016; Em-
mott et al., 2016). For training, of course, we do not use any
labels.2

4.1. Competing methods

Shallow Baselines (i) Kernel OC-SVM/SVDD with
Gaussian kernel. We select the inverse length scale γ from
γ ∈ {2−10, 2−9, . . . , 2−1} via grid search using the perfor-
mance on a small holdout set (10 % of randomly drawn test
samples). This grants shallow SVDD a small supervised
advantage. We run all experiments for ν ∈ {0.01, 0.1}
and report the better result. (ii) Kernel density estimation
(KDE). We select the bandwidth h of the Gaussian kernel
from h ∈ {20.5, 21, . . . , 25} via 5-fold cross-validation us-
ing the log-likelihood score. (iii) Isolation Forest (IF) (Liu
et al., 2008). We set the number of trees to t = 100 and
the sub-sampling size to ψ = 256, as recommended in the
original work. We do not compare to lazy evaluation ap-
proaches since such methods have no training phase and do
not learn a model of normality (e.g. Local Outlier Factor
(LOF) (Breunig et al., 2000)). For all three shallow base-
lines, we reduce the dimensionality of the data via PCA,
where we choose the minimum number of eigenvectors such
that at least 95% of the variance is retained (cf. Erfani et al.,
2016).

Deep Baselines and Deep SVDD We compare Deep
SVDD to the two deep approaches described Section 2.2.
We choose the DCAE from the various autoencoders since
our experiments are on image data. For the DCAE encoder,
we employ the same network architectures as we use for
Deep SVDD. The decoder is then created symmetrically,
where we substitute max-pooling with upsampling. We
train the DCAE using the MSE loss. For AnoGAN we fix
the architecture to DCGAN (Radford et al., 2015) and set
the latent space dimensionality to 256, following Metz et al.
(2017), and otherwise follow Schlegl et al. (2017). For Deep
SVDD, we remove the bias terms in all network units to pre-
vent a hypersphere collapse as explained in Section 3.3. In
soft-boundary Deep SVDD, we solve for R via line search
every k = 5 epochs. We choose ν from ν ∈ {0.01, 0.1}
and again report the best results. As was described in Sec-

2We provide our code at https://github.com/lukasruff/Deep-
SVDD.

https://github.com/lukasruff/Deep-SVDD
https://github.com/lukasruff/Deep-SVDD
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Table 1. Average AUCs in % with StdDevs (over 10 seeds) per method and one-class experiment on MNIST and CIFAR-10.

NORMAL OC-SVM/ SOFT-BOUND. ONE-CLASS
CLASS SVDD KDE IF DCAE ANOGAN DEEP SVDD DEEP SVDD

0 98.6±0.0 97.1±0.0 98.0±0.3 97.6±0.7 96.6±1.3 97.8±0.7 98.0±0.7
1 99.5±0.0 98.9±0.0 97.3±0.4 98.3±0.6 99.2±0.6 99.6±0.1 99.7±0.1
2 82.5±0.1 79.0±0.0 88.6±0.5 85.4±2.4 85.0±2.9 89.5±1.2 91.7±0.8
3 88.1±0.0 86.2±0.0 89.9±0.4 86.7±0.9 88.7±2.1 90.3±2.1 91.9±1.5
4 94.9±0.0 87.9±0.0 92.7±0.6 86.5±2.0 89.4±1.3 93.8±1.5 94.9±0.8
5 77.1±0.0 73.8±0.0 85.5±0.8 78.2±2.7 88.3±2.9 85.8±2.5 88.5±0.9
6 96.5±0.0 87.6±0.0 95.6±0.3 94.6±0.5 94.7±2.7 98.0±0.4 98.3±0.5
7 93.7±0.0 91.4±0.0 92.0±0.4 92.3±1.0 93.5±1.8 92.7±1.4 94.6±0.9
8 88.9±0.0 79.2±0.0 89.9±0.4 86.5±1.6 84.9±2.1 92.9±1.4 93.9±1.6
9 93.1±0.0 88.2±0.0 93.5±0.3 90.4±1.8 92.4±1.1 94.9±0.6 96.5±0.3

AIRPLANE 61.6±0.9 61.2±0.0 60.1±0.7 59.1±5.1 67.1±2.5 61.7±4.2 61.7±4.1
AUTOMOBILE 63.8±0.6 64.0±0.0 50.8±0.6 57.4±2.9 54.7±3.4 64.8±1.4 65.9±2.1
BIRD 50.0±0.5 50.1±0.0 49.2±0.4 48.9±2.4 52.9±3.0 49.5±1.4 50.8±0.8
CAT 55.9±1.3 56.4±0.0 55.1±0.4 58.4±1.2 54.5±1.9 56.0±1.1 59.1±1.4
DEER 66.0±0.7 66.2±0.0 49.8±0.4 54.0±1.3 65.1±3.2 59.1±1.1 60.9±1.1
DOG 62.4±0.8 62.4±0.0 58.5±0.4 62.2±1.8 60.3±2.6 62.1±2.4 65.7±2.5
FROG 74.7±0.3 74.9±0.0 42.9±0.6 51.2±5.2 58.5±1.4 67.8±2.4 67.7±2.6
HORSE 62.6±0.6 62.6±0.0 55.1±0.7 58.6±2.9 62.5±0.8 65.2±1.0 67.3±0.9
SHIP 74.9±0.4 75.1±0.0 74.2±0.6 76.8±1.4 75.8±4.1 75.6±1.7 75.9±1.2
TRUCK 75.9±0.3 76.0±0.0 58.9±0.7 67.3±3.0 66.5±2.8 71.0±1.1 73.1±1.2

tion 3.3, we set the hypersphere center c to the mean of the
mapped data after performing an initial forward pass. For
optimization, we use the Adam optimizer (Kingma & Ba,
2014) with parameters as recommended in the original work
and apply Batch Normalization (Ioffe & Szegedy, 2015).
For the competing deep AD methods we initialize network
weights by uniform Glorot weights (Glorot & Bengio, 2010),
and for Deep SVDD use the weights from the trained DCAE
encoder for initialization, thus establishing a pre-training
procedure. We employ a simple two-phase learning rate
schedule (searching + fine-tuning) with initial learning rate
η = 10−4, and subsequently η = 10−5. For DCAE we
train 250 + 100 epochs, for Deep SVDD 150 + 100. Leaky
ReLU activations are used with leakiness α = 0.1.

4.2. One-class classification on MNIST and CIFAR-10

Setup Both MNIST and CIFAR-10 have ten different
classes from which we create ten one-class classification se-
tups. In each setup, one of the classes is the normal class and
samples from the remaining classes are used to represent
anomalies. We use the original training and test splits in our
experiments and only train with training set examples from
the respective normal class. This gives training set sizes
of n ≈ 6 000 for MNIST and n = 5000 for CIFAR-10.
Both test sets have 10 000 samples including samples from
the nine anomalous classes for each setup. We pre-process
all images with global contrast normalization using the L1-
norm and finally rescale to [0, 1] via min-max-scaling.

Network architectures For both datasets, we use LeNet-
type CNNs, where each convolutional module consists of a
convolutional layer followed by leaky ReLU activations and
2 × 2 max-pooling. On MNIST, we use a CNN with two
modules, 8× (5×5×1)-filters followed by 4× (5×5×1)-
filters, and a final dense layer of 32 units. On CIFAR-10,
we use a CNN with three modules, 32× (5× 5× 3)-filters,
64×(5×5×3)-filters, and 128×(5×5×3)-filters, followed
by a final dense layer of 128 units. We use a batch size of
200 and set the weight decay hyperparameter to λ = 10−6.

Results Results are presented in Table 1. Deep SVDD
clearly outperforms both its shallow and deep competitors
on MNIST. On CIFAR-10 the picture is mixed. Deep SVDD,
however, shows an overall strong performance. It is interest-
ing to note that shallow SVDD and KDE perform better than
deep methods on three of the ten CIFAR-10 classes. Figures
2 and 3 show examples of the most normal and most anoma-
lous in-class samples according to Deep SVDD and KDE
respectively. We can see that normal examples of the classes
on which KDE performs best seem to have strong global
structures. For example, TRUCK images are mostly divided
horizontally into street and sky, and DEER as well as FROG
have similar colors globally. For these classes, choosing lo-
cal CNN features can be questioned. These cases underline
the importance of network architecture choice. Notably, the
One-Class Deep SVDD performs slightly better than its soft-
boundary counterpart on both datasets. This may be because
the assumption of no anomalies being present in the training
data is valid in our scenario. Due to SGD optimization, deep
methods show higher standard deviations.



Deep One-Class Classification

Figure 2. Most normal (left) and most anomalous (right) in-class
examples determined by One-Class Deep SVDD for selected
MNIST (top) and CIFAR-10 (bottom) one-class experiments.

Figure 3. Most normal (left) and most anomalous (right) in-class
examples determined by KDE for CIFAR-10 one-class experi-
ments in which KDE performs best.

4.3. Adversarial attacks on GTSRB stop signs

Setup Detecting adversarial attacks is vital in many appli-
cations such autonomous driving. In this experiment, we
test how Deep SVDD compares to its competitors on de-
tecting adversarial examples. We consider the “stop sign”
class of the German Traffic Sign Recognition Benchmark
(GTSRB) dataset, for which we generate adversarial exam-
ples from randomly drawn stop sign images of the test set
using Boundary Attack. We train the models again only on
normal stop sign samples and in testing check if adversarial
examples are correctly detected. The training set contains
n = 780 stop signs. The test set is composed of 270 normal
examples and 20 adversarial examples. We pre-process the
data by removing the 10% border around each sign, and then
resize every image to 32× 32 pixels. After that, we again
apply global contrast normalization using the L1-norm and
rescale to the unit interval [0, 1].

Table 2. Average AUCs in % with StdDevs (over 10 seeds) per
method on GTSRB stop signs with adversarial attacks.

METHOD AUC

OC-SVM/SVDD 67.5 ± 1.2
KDE 60.5 ± 1.7
IF 73.8 ± 0.9
DCAE 79.1 ± 3.0
ANOGAN −
SOFT-BOUND. DEEP SVDD 77.8 ± 4.9
ONE-CLASS DEEP SVDD 80.3 ± 2.8

Network architecture We use a CNN with LeNet archi-
tecture having three convolutional modules, 16×(5×5×3)-
filters, 32× (5× 5× 3)-filters, and 64× (5× 5× 3)-filters,
followed by a final dense layer of 32 units. We train with
a smaller batch size of 64, due to the dataset size and set
again hyperparamter λ = 10−6.

Figure 4. Most anomalous stop signs detected by One-Class Deep
SVDD. Adversarial examples are highlighted in green.

Results Table 2 shows the results. The One-Class Deep
SVDD shows again the best performance. Generally, the
deep methods perform better. The DCGAN of AnoGAN
did not converge due to the data set size which is too small
for GANs. Figure 4 shows the most anomalous samples
detected by One-Class Deep SVDD which are either adver-
sarial attacks or images in odd perspectives that are cropped
incorrectly. We refer to the supplementary material for
more examples of the most normal images and anomalies
detected.

5. Conclusion
We introduced the first fully deep one-class classification ob-
jective for unsupervised AD in this work. Our method, Deep
SVDD, jointly trains a deep neural network while optimiz-
ing a data-enclosing hypersphere in output space. Through
this Deep SVDD extracts common factors of variation from
the data. We have demonstrated theoretical properties of our
method such as the ν-property that allows to incorporate a
prior assumption on the number of outliers being present
in the data. Our experiments demonstrate quantitatively as
well as qualitatively the sound performance of Deep SVDD.
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Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J.
Stacked Convolutional Auto-Encoders for Hierarchical
Feature Extraction. ICANN, pp. 52–59, 2011.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Un-
rolled Generative Adversarial Networks. In ICLR, 2017.

Moya, M. M., Koch, M. W., and Hostetler, L. D. One-class
classifier networks for target recognition applications. In
Proceedings World Congress on Neural Networks, pp.
797–801, 1993.

Pal, M. and Foody, G. M. Feature selection for classification
of hyperspectral data by SVM. IEEE Transactions on
Geoscience and Remote Sensing, 48(5):2297–2307, 2010.

Parzen, E. On Estimation of a Probability Density Function
and Mode. The annals of mathematical statistics, 33(3):
1065–1076, 1962.

Phua, C., Lee, V., Smith, K., and Gayler, R. A Compre-
hensive Survey of Data Mining-based Fraud Detection
Research. Clayton School of Information Technology,
Monash University, Tech. Rep., 2005.

Platt, J. Sequential minimal optimization: A fast algorithm
for training support vector machines. 1998.

Radford, A., Metz, L., and Chintala, S. Unsupervised Repre-
sentation Learning with Deep Convolutional Generative
Adversarial Networks. arXiv:1511.06434, 2015.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In NIPS, 2007.

Richter, C. and Roy, N. Safe Visual Navigation via Deep
Learning and Novelty Detection. In Robotics: Science
and Systems Conference, 2017.

Sabokrou, M., Fayyaz, M., Fathy, M., et al. Fully Convo-
lutional Neural Network for Fast Anomaly Detection in
Crowded Scenes. arXiv:1609.00866, 2016.

Sakurada, M. and Yairi, T. Anomaly detection using au-
toencoders with nonlinear dimensionality reduction. In
Proceedings of the 2nd MLSDA Workshop, pp. 4, 2014.

Salem, O., Guerassimov, A., Mehaoua, A., Marcus, A., and
Furht, B. Sensor Fault and Patient Anomaly Detection
and Classification in Medical Wireless Sensor Networks.
In ICC, pp. 4373–4378, 2013.
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