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ABSTRACT
Mutual information is a well-established and broadly used
concept in information theory. It allows to quantify the mu-
tual dependence between two variables – an essential task
in data analysis. For static data, a broad range of tech-
niques addresses the problem of estimating mutual informa-
tion. However, the assumption of static data is not applica-
ble for today’s dynamic data sources such as data streams:
In contrast to static approaches, an online estimator must be
able to deal with the evolving, changing, and infinite nature
of the stream. Furthermore, some tasks require the esti-
mation to be available online while processing the raw data
stream. Our proposed solution Mise (Mutual Information
Stream Estimation) allows a user to issue mutual informa-
tion queries in arbitrary time windows. As a key feature, we
introduce a novel sampling scheme, which ensures an equal
treatment of queries over multiple time scales, e.g., ranging
from milliseconds up to decades. We thoroughly analyze
the requirements of such a multiscale sampling scheme, and
evaluate the resulting quality of Mise in a broad range of
experiments.

1. INTRODUCTION
In information theory, mutual information is a ubiquitous

measure for the mutual dependence of two random vari-
ables. Intuitively, mutual information I(X,Y ) is equal to
the reduction of uncertainty on one random variable X given
knowledge of another variable Y. It is a symmetric measure,
i.e., I(X,Y ) = I(Y,X). A high mutual information indi-
cates a large reduction of uncertainty, i.e., the variable pair
shows a strong mutual dependence. Compared to other de-
pendence measures, like for instance Pearson or Spearman
correlation, mutual information is not limited to specific
kinds of dependence, e.g., linear or monotonous, but cap-
tures every possible type of dependence. Because of these
properties, it has a long history in both theory and applica-
tions. Proper estimation of mutual information from real-
valued data is a non-trivial problem and has been covered in
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the literature extensively. Amongst the traditional mutual
information estimators, Kraskov estimation has emerged as
a leading approach [22, 19, 30, 20]. Consequently, we build
upon this estimation principle in this work. Traditional es-
timation algorithms however focus on the case of a fixed,
static data sample. The notion of time is not considered ex-
plicitly. This is a fundamental difference to data originating
from a stream. By its nature, a data stream is evolving and
changing over time, is infinite, and comprises multiple time
scales. Given these properties, the analysis of data streams
has become a challenging task in the database research com-
munity.

To illustrate, think of analyzing the mutual dependence in
a stream of stock prices. Detecting a mutual dependence of
stocks provides important information for financial analysis,
investment management, or return prediction. In general,
the mutual dependence between stocks fluctuates over time,
and one may observe periods of high or low mutual infor-
mation. Furthermore, the changes in mutual dependence
may occur on a broad range of time horizons: In some cases
a mutual (in-)dependence lasts for decades, while in other
cases a dependence appears and disappears within seconds.
An analyst might for instance find a dependence of a pair
of stocks in July. This leads to questions like whether the
dependence did also exist in June, when it has appeared
first, or whether it also exists on different time scales like
a yearly time horizon or when looking at hours or minutes.
Overall, we make the following key observation: Since the
dependencies are dynamic, each analyst may be interested in
a different time window. That is, analysts want to estimate
mutual information based on an arbitrary window size, and
the window may be shifted arbitrarily into the past.
Challenges. This observation has a direct implication when
designing a data stream management system (DSMS) that
supports mutual information queries: The DSMS must al-
low a user to explicitly specify the query window bound-
aries individually for each query. In general, such queries
are so-called ad-hoc one-time queries [3], and they are most
challenging since this is the most general type of query. Sup-
porting such queries even raises the question: Is it possible
at all to answer mutual information queries in any window
without storing the entire data stream? Naively, one could
approach the problem by (1) storing the entire stream and
(2) running a static mutual information estimator for ev-
ery incoming query. Clearly, this naive approach has severe
limitations and is not in line with the so-called “streaming
model” [3]: First, storing the stream obviously contradicts
the idea of stream processing. The second issue affects query
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performance; we illustrate it using our example scenario: If
there are many analysts working simultaneously, the DSMS
has to answer many queries as well; the rate of incoming
queries may even exceed the data rate of the stream. In
such a case, the naive approach will collapse since it has
to expensively recompute a mutual information estimate for
every single query – even if the windows of two queries have
a significant overlap. Therefore, a challenge is to develop
a summarization data structure which provides aggregated
information that is useful for many queries.
Our Contributions. In this work, we propose the frame-
work Mise (Mutual Information Stream Estimation) which
tackles the challenge of answering mutual information que-
ries in arbitrary time windows. To avoid storing the whole
data stream, we exploit the multiscale nature of time. We il-
lustrate the idea in our example scenario: For financial anal-
yses, time scales can vary significantly, ranging from seconds
right up to years or decades. In such analyses, the query win-
dow size and the amount the query window is shifted into
the past often show a certain relationship. We exploit this
by dividing the space of all possible queries into multiscale
equivalence classes depending on the ratio of the window
size w and the offset o into the past. For instance, the fol-
lowing two queries are equivalent: (I) a query with w = 1
second and an offset of o = 5 seconds, and (II) a query with
w = 5 years and an offset of o = 25 years. In this work we
will tackle the essential question that arises with multiscale
equivalence: How can a DSMS answer equivalent queries
with equal quality? As a key contribution we provide a so-
lution to this question by deriving the proper sampling dis-
tribution out of this requirement. We will see that the com-
mon principle of more detail on more recent data emerges
naturally as a result. Based on the sampling distribution re-
quired, we develop two different multiscale sampling schemes
which have either constant or logarithmic complexity over
time. They are the first sampling schemes that inherently
provide equal quality over multiple time scales.

As another important contribution, we introduce the no-
tion of a query anchor, which is a novel dynamic data struc-
ture for mutual information estimation. In a nutshell, a
query anchor keeps track of quantities that allow to esti-
mate mutual information according to the Kraskov principle.
These quantities include nearest neighbor relationships and
counts of data points in the marginal distributions. While
the computation of these quantities is straightforward on
static data, the challenge with data streams becomes: To
obtain an efficient estimation, it is necessary to keep track
of all changes in these quantities over time. By proposing
the query anchor data structure, we solve this problem and
enable an incremental computation of these quantities. Con-
sequently, query anchors provide aggregates that can be used
for different queries. This leads to a significant speed-up of
query execution time.

Summing up, our contributions to deal with the challenges
mentioned are as follows: We deal with
• the stream’s dynamic nature by design, i.e., by allow-

ing the user to query the stream in arbitrary windows,
• the stream’s infinite and multiscale nature, by in-

troducing the novel multiscale sampling paradigm,
• a large number of online queries, by efficient incre-

mental computations within our query anchor data struc-
ture.

Furthermore, we provide a detailed analysis of both our mul-

tiscale sampling schemes and the query anchor data struc-
ture. To complement our analysis, we demonstrate the high
quality of Mise in a broad range of experiments, including
several real-world scenarios.

2. STATIC ESTIMATION PARADIGMS
Estimation of mutual information on static data has been

studied in many publications, including several surveys [28,
30, 19]. Estimators can be categorized according to the un-
derlying formula of the estimation. The first estimation
paradigm is based on the integral definition of mutual in-
formation:

I(X,Y ) =

∫∫
p(x, y) log

p(x, y)

pX(x)pY (y)
dy dx (1)

where p(x, y) is the joint probability density function, and
marginal distributions are denoted as pX(x) and pY (y). Es-
timators of this type replace these theoretical functions by
density estimates; they are hence called plug-in estimates
[28]. A common problem of such estimators is that, since
the underlying distributions are unknown, they are prone to
underestimating the variability of the distributions based on
a finite sample. This leads to a heavily biased estimate of
mutual information, which has been studied extensively [27,
29, 11, 13]. Furthermore, to the best of our knowledge, there
is no general purpose density estimation technique that al-
lows to query density estimates in arbitrary windows over
a data stream. Therefore, we will focus on the second esti-
mation paradigm in this work. Estimators of this kind are
based on the entropic definition of mutual information:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (2)

where H(.) denotes entropy. Therefore, estimating mutual
information can be achieved by an estimation of entropy.
The Kozachenko-Leonenko-Estimator [21] is a famous non-
parametric approach to estimate entropy based on nearest
neighbor information. The problem regarding estimation
of mutual information is that the errors of estimating the
marginal and the joint entropies do not cancel. This was
solved by Kraskov et al [22], leading to a mutual information
estimator with excellent estimation properties: Comparative
studies [19, 30, 20, 22] have shown that the Kraskov estima-
tor (1) shows a very fast convergence, (2) is unbiased in case
of independent variables, and (3) shows very low bias in gen-
eral compared to estimators of the first paradigm. However,
it is an open research question how to incorporate its princi-
ples into the estimation process for data streams. Our goal
is to make these favorable estimation properties available for
online processing.

3. RELATED WORK
Analyzing related work shows that certain issues recur.

Therefore, we first summarize recurring limitations before
analyzing related work in detail.

• FixedWindow: Many data stream techniques do not al-
low the user to specify arbitrary query windows. Summa-
rization techniques typically maintain a synopsis aggregated
either over the whole stream, a sliding window, or – as gener-
alization of these paradigms – aggregated based on a certain
(smooth) time decay function. In either case the scope in
time is fixed, i.e., the “query window” is inherently bound to



the aggregate computation. In particular, most techniques
focus on keeping track of the most recent aggregate value.
This prevents the user from querying the aggregate in any
window that is strictly in the past.

• LimitedDomain: Many data stream summarization tech-
niques are exclusively designed to operate on data streams
consisting of discrete items or integer values within a lim-
ited range. Compared to real-valued attributes, the finite
attribute domain simplifies any summarization task since it
allows to operate on item frequencies, which again allows
to make use of various sketching techniques [7]. From an
estimation theoretic perspective, the major challenge of es-
timating mutual information on continuous data is a result
of the infiniteness of the attribute domain. Therefore, mak-
ing any assumptions regarding the domain is not feasible
when constructing a general purpose estimator.

• Univariate: Many of the techniques discussed below are
designed for summarizing a single univariate stream. In
order to leverage them to estimate mutual information, it
would be necessary to modify them to the bivariate case. In
many cases such a modification is non-trivial or impossible.

• Biased: Many ideas discussed below would result in a mu-
tual information estimator based on Equation 1, and would
come with all the issues discussed in Section 2.

Estimation Foundations. We now review stream sum-
marization techniques as proposed in the scientific litera-
ture that may serve as a foundation for computing a mutual
information estimate. For instance, one might be tempted
to leverage techniques which summarize quantiles to esti-
mate mutual information. This problem of summarizing
ε-approximate quantiles has been solved for both the sin-
gle pass [17] and the sliding window [2] paradigms. Such
an approach would suffer from FixedWindow (inability to
specify arbitrary queries) and Biased (due to the binning
characteristic of quantiles), and most notably it remains a
non-trivial problem to extend the notion of summarizing one
dimensional quantiles to the bivariate case (Univariate).
Similarly, maintaining histograms as a summary [12, 16]
suffers from FixedWindow and Biased as well. Another
problem that has been addressed is estimating entropy over
data streams [23, 4, 6]. Even if there might be (non-trivial)
solutions to issues FixedWindow and Univariate for these
techniques, a severe problem remains: The techniques heav-
ily rely on the assumption of a limited attribute domain
(LimitedDomain). Overall we can see that all existing sum-
marization techniques are affected by several issues. This
highlights the necessity to develop a novel summarization
data structure.

Correlation Analysis. Mutual information in the broader
context of (pair-wise) dependence measures in general is re-
lated to work on online correlation tracking. In particu-
lar the so-called all-strong-pairs correlation query problem
[31] has been solved for data streams [34, 35]. While issues
FixedWindow and LimitedDomain apply for these tech-
niques as well, the major difference is the problem statement
itself: Compared to linear binary correlations, mutual infor-
mation can capture much more complex dependence types.
Also note that the problem considered in [14] is entirely
different: They investigate pointwise mutual information
(PMI), a formalization of the psycholinguistic association
score, and try to find word-pairs with the highest PMI in a
vocabulary. Technically, there is no connection to our much
more general problem.

Sampling. The principle of more detail on recent data plays
an important role in many approaches on data streams. This
concept has been applied for instance to the problem of
maintaining specific aggregates according to a time-decay
weight function [10, 8, 9], and to sampling with a weighted
reservoir [15, 1]. However, none of these approaches de-
rives the weight function from quality requirements on the
queries. As a major contribution we will derive the particu-
lar weight function that is required to ensure the equal treat-
ment of queries over multiple time scales. We will see that
this basic requirement results in a unique dynamic weight
function, which does not allow a straightforward application
of existing weighted sampling schemes.

Nearest Neighbor Querying. Section 4.2 will show that
estimating mutual information according to the Kraskov
principle requires knowing the nearest neighbors. Thus, our
approach is remotely related to work on nearest neighbor
(NN) monitoring in spatio-temporal databases. Given a set
of objects and a set of query points, continuous k-NN query-
ing addresses the case that both the objects and query points
move over time. Techniques like [18] make strong assump-
tions on the trajectories of the objects, e.g., they must move
with a constant velocity. Later work [26, 33, 32] relaxes these
assumptions, but does not explicitly consider the appear-
ance/disappearance of objects or queries. To some degree
this has been addressed in [25] (by incorporating a sliding
window model into continuous queries) and [5] (by allowing
objects/queries to expire after a certain time). While these
concepts are somewhat similar with what is needed here,
fundamental differences remain. We will discuss these dif-
ferences after we have proposed an exact problem statement
in Section 4.1.

4. PROPOSED APPROACH
In what follows, we will structure the presentation of our

approach into three steps. First, we introduce a summa-
rization data structure, a so-called query anchor, which is
responsible for collecting the dynamics of nearest neighbor
relationships in the data stream (Section 4.1). As the next
step, we move to the bigger picture, by explaining how the
overall algorithm makes use of these query anchors (Sec-
tion 4.2). We will see that, once we are able to keep track of
the changes in nearest neighbors over time, we can extract
an online mutual information estimation from the query an-
chors. Finally we turn to the question of how to solve the
challenges introduced by the infinite and multiscale nature
of the stream (Section 4.3). Our solution to this problem will
exploit the equivalence of multiple time scales for sampling.

Subject of our analysis is data streams formed by a pair of
one-dimensional continuous random variables X and Y. We
do not make any assumption on the underlying distributions
of X and Y. We assume a fixed sampling rate of the data
stream, i.e., samples arrive after a fixed time interval. Ex-
tending our approach to variable-rate data streams or more
than two variables is part of future work. We denote the
pair of realizations at time t as Qt = 〈Xt, Yt〉, where Xt and
Yt are the samples at time t. We will refer to subsequences
of the data stream with the notation Q = {Qt1 , Qt2 , . . .}.
In general a subsequence Q can be sparse, i.e., does not
necessarily contain consecutive data samples. In order to
constrain a subsequence to a certain time window starting
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Figure 1: Example showing incremental effects on
nearest neighbors, marginal points, and marginal
counts

at ts and ending at te, we use the following notation:

Qtste ≡ {Qt ∈ Q | ts ≤ t ≤ te}

Regarding time points, our convention is to use the time t0
to refer to the present time, i.e., the current or most recent
time point available.

4.1 Query Anchors
We now introduce the summarization data structure that

we use to collect information from the data stream. The
computation of a mutual information estimate according to
the Kraskov principle requires knowledge of nearest neigh-
bor relationships in both the joint and the marginal spaces.
While the computation is straightforward in the case of
static data, it becomes a challenge in the online case: Near-
est neighbor relationships are no longer static but inherently
change over time, making it necessary to incrementally track
changes over time. We will model these dynamics in the fol-
lowing.

Definition 1. Distance: We define the distance between
two data points Qt and Qt′ according to the maximum norm
denoted as:

dist(Qt, Qt′) ≡ max (|Xt −Xt′ |, |Yt − Yt′ |)

Using the maximum norm is in line with Kraskov and en-
sures that estimation errors cancel each other out [22].

Definition 2. k Nearest Neighbor Distance: We define
the k nearest neighbor distance of Qt for a subsequence Q
as the distance to the k nearest neighbor of Qt in Q. The k
nearest neighbor is a point Qt? ∈ Q satisfying:

|{Qt′ ∈ Q \ {Qt} | dist(Qt, Qt′) < dist(Qt, Qt?)}| < k

|{Qt′ ∈ Q \ {Qt} | dist(Qt, Qt′) ≤ dist(Qt, Qt?)}| ≥ k

We denote the k nearest neighbor distance as follows:

kNND(Qt,Q) ≡ dist(Qt, Qt?)

When the subsequence does not have a length of k, the k
nearest neighbor distance is undefined. Please note that for
the definition of kNND it is irrelevant whether the k nearest
neighbor is unique.

We illustrate these definitions by an example given in Fig-
ure 1. It shows how a nearest neighbor relationship can
evolve over time. For simplicity we consider the k = 1 near-
est neighbor. Our point of reference is the point at time
t = 0, located near the center in the plots. The points are
labeled according to their time of occurrence in the stream.
The left plot shows the subsequence Q0

6, i.e., contains all
points Qt with 0 ≤ t ≤ 6. We can see that the k = 1
nearest neighbor up to time t = 6 is the data point Q1.
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Figure 2: Evolvement of marginal counts over time

The square centered on our point of reference corresponds to
kNND(Q0,Q0

6). We illustrate this kNND as dashed slices.
The next plot shows the subsequence extended by one data
point. This leads to an update of the nearest neighbor, re-
ducing kNND given Q0

7.
Based on the nearest neighbor information, we now define

the notion of marginal points, which plays a key role in the
estimation process:

Definition 3. Marginal Points: Given a point of refer-
ence Qt, we call a data point Qt′ 6= Qt an X-marginal point
of Qt if and only if

|Xt −Xt′ | < kNND(Qt,Q)

where Q is a subsequence containing both Qt and Q′t. We
define the marginal points w.r.t. Y correspondingly.

We illustrate this notion using Figure 1. Intuitively, mar-
ginal points are points that fall into the slices corresponding
to the kNND box. For the subsequence Q0

6 (left plot) and
our point of reference Q0, we identify Q1, Q4, and Q5 as
marginal points in Y. With respect to X, only Q2 and Q6

are marginal points – Q1, which defines the k nearest neigh-
bor distance itself, is not included due to the “less than”
condition. In the second plot corresponding to subsequence
Q0

7 we observe that some points have lost their marginal
point property due to the update of kNND. In the Y di-
rection for instance, all three former marginal points are no
longer located within the slice.

Definition 4. Marginal Counts: Given a point of refer-
ence Qt and a subsequence Q containing Qt, we define the
marginal counts as the number of marginal points in the
subsequence, i.e.:

MCx(Qt,Q) = |{Qt′ ∈ Q | Qt′ is X-marginal point of Qt}|

Accordingly, we refer to the number of Y -marginal points in
Q as MCy.

The table on the right in Figure 1 shows the development
of the marginal counts over time. In the following discus-
sion we focus on only one dimension (Y w.l.o.g.). When a
new data point arrives, there are in general three possibil-
ities: (1) The data point does not fall into the current Y
slice, leaving MCy unchanged. (2) The data point falls into
the slice but has no influence on the current kNND. This
increments MCy by one. (3) The data point leads to an
update of the kNND. Note that for k > 1, the new point
does not have to be the new best nearest neighbor itself; it
can take any position within the top-k ranked neighbors. In
general this will result in a new distance of the neighbor on
rank k. After such a kNND-update, the marginal points
have to be re-evaluated. In general the decrease in the k
nearest neighbor distance means that MCy may drop to a
lower value. Figure 2 shows an exemplary plot of MCy over



time, summarizing these dynamics of the marginal count:
As long as kNND is unchanged, MCy increases monotoni-
cally; updates of kNND lead to sudden drops of MCy. We
will further analyze the growth rate of marginal counts over
time in our complexity analysis in Section 5.

In order to handle these dynamics of marginal counts, we
now define the notion of a query anchor:

Definition 5. Query Anchor: We define a query anchor
as a data structure that precomputes and stores marginal
counts. It is associated with a certain data point Qt, i.e., is
located at time t and has knowledge on Xt and Yt. A query
anchor provides

• a method insertRight(Qt′) which adds a data point
Qt′ in forward time direction, i.e., t′ > t,

• a method insertLeft(Qt′) which adds a data point
Qt′ in backward time direction, i.e., t′ < t,

• a method query(t1, t2) which returns the marginal
counts MCx(Qt,Qt1t2) and MCy(Qt,Qt1t2), and the total

number N ≡ |Qt1t2 | of data points that have been shown
to the query anchor by its insert operations.

Note that in general the number N can be smaller than
the window size t2 − t1 if the query anchor has only seen
a sparse subsequence of the data. Compared to our exam-
ple from Figure 1, a query anchor differs in the sense that
it has to keep track of the marginal counts in both time
forward and time backward direction. We will turn to the
question of implementing query anchors in Section 5, pro-
viding a solution to efficiently store marginal counts in both
time directions.
Differences to Continuous k-NN Queries. Having for-
mulated the problem statement, it becomes clear that the
problem has fundamental differences to work on continuous
k-NN queries:
• There, a continuous query always targets at the current

state. Here in turn, a query anchor has to evaluate queries
w.r.t. any time window containing the query anchor.
• Symmetry of time directions: For a query anchor, the

notion of time splits into a time forward and backward
component. Work on continuous queries does not consider
this issue. We will show that it is possible to exploit this
symmetry of both time directions in an implementation
(Section 5).
• On the other hand, an issue not explicitly studied here,

but addressed in related work on spatio-temporal data-
bases is the mobility of objects/queries. Our specific work
does not need to take it into account, since both data ob-
jects and query points are simply measured values, which
cannot change in retrospect.

Overall, these differences highlight that our concept of query
anchors is orthogonal to work on continuous k-NN queries.

4.2 MISE Framework
Our query anchor data structure provides an abstraction

over the dynamics of marginal counts observed in a data
stream. This abstraction allows to formulate the Kraskov
estimation principle [22, 21] in the online context:

Definition 6. Mutual information estimate: Given a
query anchor for Qt and a subsequence Qt1t2 with t1 ≤ t ≤ t2,
the mutual information estimate is defined as follows:

Î = ψ(k)− ψ(MCx + 1)− ψ(MCy + 1) + ψ(N) (3)

Figure 3: Illustration of Mise

where ψ is the digamma function, N is the length of the
subsequence that the query anchor has seen, and MCx, MCy
are the marginal counts returned by query(t1, t2).

For the theoretical background behind Equation 3 we refer
to [22]. Briefly sketched, the idea of the Kraskov principle
is to formalize the probability that there are k − 1 objects
with a distance lower then kNND and N−k−1 objects with
a distance exceeding kNND. This probability can then be
plugged into the integral definition of entropy, leading to a
mutual information estimate via Equation 2.

Obviously an estimation based on a single query anchor
has a large statistical uncertainty. This statistical error can
be reduced significantly by taking the average of the esti-
mates from several query anchors. We will exploit this idea
in our Mise framework, which we describe in the following.

The Mise framework (cf. Algorithm 1) provides two oper-
ations: (1) an insert operation to add data from the stream
into the system, and (2) a query operation which retrieves
a mutual information value for a certain query window. In-
ternally Mise stores a sample of query anchors. This query
anchor sample is modified by a Sampling function respon-
sible for the deletion of query anchors. We will discuss the
instantiation of this Sampling function in Section 4.3 and
continue with an explanation of the insert and query op-
erations.

The insert operation first creates a new query anchor
which corresponds to the data point Qt just received. We
then perform a forward and reverse initialization: The for-
ward initialization performs an insertRight operation on
all existing query anchors for the new element Qt. In other
words, we show the new element to all existing query an-
chors in the current sample. The reverse initialization on the
other hand adds data points corresponding to the existing
anchors to the new anchor by using the insertLeft oper-
ation. Finally, we add the query anchor to the sample and
invoke a sampling function. In general, the sampling func-
tion modifies the current anchor sample by deleting certain
anchors according to the sampling scheme we will present
in Section 4.3. An exemplary result after performing sev-
eral insert operations is illustrated in Figure 3. Each circle
corresponds to a query anchor, and the positioning shows
the distribution of the query anchor sample over time. The
black arrows indicate how much information was added to a
query anchor by either insertLeft or insertRight. Note
that in reverse time direction (insertLeft) the data points
are filled sparsely, i.e., not every data point covered by the
arrow was actually inserted into the query anchor. In time
forward direction on the other hand, all data points can be
inserted. In terms of this illustration, the insert operation
(1) adds a new query anchor at t0, (2) extends the arrows
of existing anchors by one step to the right, (3) extends the
arrow of the new query anchor to the left, up to the position
of the oldest query anchor, and (4) modifies the sample.

The query operation first determines the query anchors



that are contained in the query window. We query each an-
chor in the window for the marginal counts MCx and MCy,
and the number of data points N that a query anchor has
seen in the given window. Overall, we obtain a mutual infor-
mation estimate from each anchor by Equation 3 and return
the arithmetic sample mean of these estimates. Figure 3
illustrates the query operation: The blue shaded area cor-
responds to an exemplary query window. The green arrows
show the query ranges that are used to obtain the marginal
counts of the anchors within the query window. Note that
for different query windows or a different query anchor dis-
tribution it is possible that the green arrows do not extend
fully over the query window. In this case the query anchor
has only seen a subsample of the whole window, which can
still contribute valuable information to the estimation.

Algorithm 1 Mise framework

1: anchors ← {}
2: procedure Insert(Qt) . interface to add data
3: a ← new query anchor at Qt
4: for all o ∈ anchors do
5: o.insertRight(Qt) . forward initialization
6: a.insertLeft(o) . reverse initialization
7: end for
8: anchors ← anchors ∪ {a}
9: anchors ← Sampling(anchors) . cf. Section 4.3
10: end procedure

11: function Query(t1, t2) . interface to query MI
12: inWindow ← {a ∈ anchors | t1 ≤ a ≤ t2}
13: estimates ← () . empty sequence
14: for all a ∈ inWindow do
15: MCx,MCy, N ← a.query(t1, t2)

16: Î ← ψ(k)− ψ(MCx + 1)− ψ(MCy + 1) + ψ(N)

17: estimates.append(Î)
18: end for
19: return mean(estimates)
20: end function

Estimation Quality. An analytic analysis of the estima-
tion variance and bias would require strong assumptions on
the data. Since the overall mutual information estimate is
based on taking a sample mean of individual estimates, the
standard deviation of Mise can be expressed by the stan-
dard deviation of the mean: Assuming that the data distri-
bution is static over the query window leads to a standard
deviation of σ = σÎ/

√
M , where M is the number of query

anchors in the window and σÎ is the standard deviation of
the individual estimates. σÎ obviously depends on the dis-
tribution of the data. Instead of deriving σÎ only for specific
distributions, we focus on a very broad empirical analysis of
the estimation characteristics in Section 6, featuring a large
number of real-world data streams.

4.3 Multiscale Sampling of Query Anchors
Our goal regarding the sampling function is to exploit

the multiscale nature of time. In general, any query window
can be specified by its width w and the offset o, which de-
notes how much the query window is shifted into the past
(cf. Figure 4). Intuitively, the motivation behind our multi-
scale sampling follows the general equivalence of time scales.
Think of a query with a window size of 1 second shifted by
1 second into the past, a query with w = 1 hour and o =

Figure 4: Examples of multiscale equivalence classes

1 hour, or even a query with w = 1 year and o = 1 year.
Though the queries are defined over vastly different time
scales, they are structurally equivalent. In many applica-
tion a user might want to obtain answers of equal quality
for these queries. Traditional sampling approaches like slid-
ing window (SW) or reservoir sampling (RS) have significant
issues with queries comprising multiple time scales. In gen-
eral, we expect SW to fail for queries with a large window
size in the distant past and RS to fail for queries with a
very small window size in the most recent past. The key
question is: How is it possible to answer these queries with
equal quality? We will see that this simple requirement au-
tomatically generalizes for arbitrary o / w values, and that
the more detail on recent data principle emerges naturally
as a result. To formalize equivalence of time scales, we will
denote the ratio of the query offset o to the window size w as
a unit-free quantity ∆ ≡ o

w
. Based on this quantity, we can

partition the space of all possible queries into equivalence
classes.

Definition 7. Multiscale Query Equivalence: We de-
fine the multiscale query equivalence relation , between
queries A and B by: A , B iff ∆A = ∆B .

We call the groupings formed by , multiscale equivalence
classes. Based on the multiscale equivalence of queries, we
formalize the key idea behind our approach to operate on
various time scales:

Definition 8. Multiscale Sampling: A multiscale sam-
pling is a sampling scheme which provides an equal expected
number of sampling elements for all queries which belong to
the same equivalence class.

Thus, for a multiscale sampling of query anchors the ex-
pected number of query anchors in a window is constant for
all queries with the same ∆. Figure 4 shows examples of
equivalent queries for different ∆ values. When the multi-
scale property is fulfilled, the queries with the same color
have the same expected number of query anchors.

We will now propose a novel sampling scheme that ful-
fills the multiscale property. More specifically, we derive
the sample distribution that is required for multiscale sam-
pling. To simplify the presentation, we temporarily assume
a continuous time domain and switch to a discrete time in
a second step. Since the sample distribution is only defined
for t < t0, we will change to a time domain that is rela-
tive to t0 and extends into the past (cf. Figure 4). This
allows us to use the notion of probability densities to ex-
press the expected number of anchors in a query window.
We refer to the probability density of our query anchors as
f(t). Thus, we are looking for an f(t) which is a proba-
bility density function that satisfies the multiscale property.
The expected number of query anchors in a query window



[o, o+w] is equal to the integral
∫ o+w
o

f(t)dt times the total
number of query anchors. By using o = w ·∆, we can write
the integral bounds as [w∆, w(∆ + 1)]. Definition 8 requires
that, for a fixed ∆, this integral (the expected number of
sampling elements) is invariant of the time scale, i.e., it is
constant for all w. Thus, f(t) must fulfill:∫ w(∆+1)

w∆

f(t)dt
!
= const (4)

Lemma 1. Sampling according to a reciprocal distribution
f(t) = C

t
fulfills the multiscale property (with appropriate

normalization C corresponding to a finite positive support).

Proof. Equation 4 requires d
dw

∫ w(∆+1)

w∆
f(t)dt

!
= 0. Differen-

tiation under the integral according to the generalized Leib-
niz integral rule yields:

(∆ + 1) f (w(∆ + 1))
!
= ∆ f (w∆) (5)

By plugging f(t) = C
t

into Equation 5, one can see that all ∆
terms cancel each other out, i.e., the reciprocal distribution
satisfies the multiscale property for any ∆ > 0.

We now turn to the question of how to transform this re-
sult to a discrete time domain. Obviously the support of
a reciprocal distribution is only defined for t > 0 due to
the singularity at t = 0. This directly reflects the general
issue of estimation from a very small window size w: The
smaller the window size, the larger the necessary density
of sample points in order to maintain a sample of a fixed
size. In a real-world system there commonly are domain
specific constraints on the sampling frequency, i.e., the sam-
pling resolution cannot be arbitrarily high. We deal with
this issue by allowing a saturation of the discrete distribu-
tion in the region where the theoretically necessary sample
density exceeds what is physically possible. To formalize the
discretization, we will highlight the discretized time domain
by using n as a counter of time steps in the past, starting
with n = 1 as the most recent time point. We discretize the
reciprocal distribution at these time points, each resulting
in a probability Pn. Each Pn is equal to the probability that
our sample contains the query anchor which is n time steps
in the past:

Pn =

{
1 if n ≤ α
α
n

otherwise
(6)

The resulting distribution1 is illustrated in Figure 5. The
(negative) x-axis corresponds to the discretized time steps
n, and the y-axis shows the probabilities Pn. The parameter
α controls the decay of the reciprocal distribution, and it
will serve as the parameter to control the overall quality of
the sampling. Equation 6 implies that we must keep the
bαc most recent query anchors with a probability of 1, as a
result of the shortage of available sampling points. For older
query anchors with n > α, the probability to have a certain
query anchor in the sample follows the reciprocal function.

So far Equation 6 only specifies the necessary probabilities
in the query anchor sample at a fixed time t0. The essential

1
The particular shape of this function – a piecewise composition of

a reciprocal and a uniform function – makes a direct application of
sampling schemes that specify weights in time forward direction [15,
9] impossible.

1

0

Figure 5: Discretized distribution with saturation

question now becomes: How do we have to delete existing
query anchors when going from one time step to the next in
order to maintain an overall distribution according to Equa-
tion 6? This requires to convert the sampling probabilities
Pn of Equation 6 into an incremental deletion scheme.

Definition 9. sampling function: Based on the notion of
stepwise sampling probabilities

SPn =

{
1 if n ≤ α
Pn
Pn−1

otherwise
(7)

we define the sampling function as follows: We keep a query
anchor of age n with a probability of SPn.

This means that we generate a random value rand ∈ [0, 1]
for every anchor. If rand < SPn we keep the anchor; other-
wise the anchor is deleted immediately.

Lemma 2. Modifying the query anchor sample with the
sampling function results in the sampling probabilities Pn
after each time step.

Proof. In order to show this, we have to link the stepwise
sampling probabilities to the probabilities Pn. Intuitively,
the stepwise probabilities slide over a certain time point
when time evolves. Since the decisions whether to keep a
given query anchor are independent, the final probability
that a query anchor still exists after k time steps is simply
the product of the first k stepwise probabilities. Therefore
we have to prove that the product of the stepwise probabil-
ities indeed gives the desired probability Pn, i.e.,

Pn
?
=

n∏
k=1

SPk (8)

Let n∗ be the smallest n > α. Obviously, Equation 8 is
fulfilled for all n < n∗ since both sides are 1. For n = n∗ we
have Pn−1 = 1, and thus, SPn = Pn, which again satisfies
Equation 8 given

∏n−1
k=1 SPn = 1. For n > n∗ we conclude

by induction:

Pn+1
!
=

n+1∏
k=1

SPk =

n∏
k=1

SPk · SPn+1 = Pn ·
Pn+1

Pn

Combining Lemmas 1 and 2 leads us to our final conclu-
sion: It is possible to construct an iterative sampling scheme
which always maintains the multiscale property in the query
anchor sample.

5. IMPLEMENTATION AND ANALYSIS
In the following we will discuss implementation details

of our approach. To ensure repeatability, we provide both
pseudo-code and a ready-to-use executable on a supplemen-
tary website,2 and focus on the essentials in the following.
2

http://www.ipd.kit.edu/˜muellere/MISE/

http://www.ipd.kit.edu/~muellere/MISE/


Query Anchor Complexity. An important aspect of our
proposed approach is that it is possible to implement query
anchors very efficiently. Our solution is based on the fact
that a query anchor can treat the forward and backward time
directions independently. For both time directions, we can
use dynamic arrays to store the marginal points and changes
to the set of the k nearest neighbors. The insertion of new
data works as follows: insertRight first checks whether the
new data point leads to a change of the k nearest neighbors
in time forward direction. If this is the case, the new set of k
nearest neighbors is appended to the dynamic array storing
the neighborhood changes. Estimation theory shows that
Kraskov estimation in general requires a very low k settings
(i.e., k ≤ 4, cf. Section 6), thus, the O(log k) complexity of
the set operations are negligible. Next, insertRight checks
whether the new data point is a marginal point in either X
or Y , and appends the point to the respective dynamic ar-
rays. insertLeft is implemented accordingly, operating in
time backward direction. Overall, an insert operation comes
down to extending the dynamic arrays, i.e., the amortized
insert complexity is O(1).

The query operation has two substeps: (1) reconstruction
of the proper kNND for the given query window and (2)
counting of marginal points. Step (1) can be implemented
efficiently, since the two dynamic arrays storing the changes
of the k nearest neighbor sets in both time directions are
sorted by construction. This allows to perform a binary
search to retrieve the k nearest neighbor sets in each time
direction. To get the kNND over the whole query window,
it is simply possible to create the union of both sets and
determine the k-th element. Step (2) counts the marginal
points which are within the window boundaries and have a
marginal distance lower than the just determined kNND.
Due to the intrinsic sorting of our two-sided insert scheme,
a binary search can again solve this efficiently.

Regarding memory complexity, a query anchor obviously
requires O(M), where M is the number of marginal points.
The question is how the number of marginal points M grows
over time. Unfortunately, a respective formal analysis would
require assumptions regarding both the data distribution it-
self and how it changes over time. Even under the assump-
tion of a static data distribution, there is no general result.
However, it is possible to derive the general spectrum of
possible growth rates. This follows from the findings of ex-
treme value theory [24], which we explain in the following.
As illustrated in Figure 1 and 2, there are two opposing ef-
fects: On the one hand, if the size of a slice was fixed, the
number of marginal points would simply increase linearly,
assuming a static data distribution. On the other hand, the
width of the slice can only decrease monotonically over time.
Thus, the question is how fast the k-NN distance decreases
over time. In general the distance distribution of each query
anchor is highly individual. Determining the minimum (or
the k-th smallest element) of a sample drawn from this dis-
tance distribution is a standard problem of extreme value
theory [24]. Since the metric is bounded by the minimum
distance of zero, the domain of attraction is limited to a spe-
cific category, the Type III or Weibull family. However, the
convergence rate of the minimum does not have a general
result in this category. Hence, the overall growth rate of our
marginal count can vary; there are the following cases:
• The minimum distance may decrease ∝ 1

N
. For instance,

this is the case if the distance distribution is an exponen-

tial or uniform distribution [24]. In this case the complex-
ity of marginal counts is O(1), due to the rapid decrease
of the slice width.
• For some data distributions the growth of marginal counts

is O(Nα) with α < 1. For example, when a query an-
chor is placed within a uniform distribution, the growth

is O(N
1
2 ). Due to space constraints we cannot derive this

result here. We therefore provide the derivation on our
supplementary website.2

• For (rare) outlier objects the distance distribution mainly
produces large distances, and therefore, the rate of con-
vergence of the minimum is low. This yields the worst
case complexity of O(N).

In light of these findings, our expectation for the general
case of arbitrary data distributions which may change over
time is to obtain a mixture of these three cases. Therefore,
we perform a thorough empirical analysis of the growth rate
in our evaluation (cf. Section 6.4).

MISE Complexity. Naturally, the most important com-
plexity factor of the Mise framework is the size S of the
query anchor sample. The sample size S not only deter-
mines the overall memory consumption; it also defines the
complexity of the insert operation since the insert oper-
ation has to connect each incoming data sample to the ex-
isting query anchors and vice-versa. Therefore the insert
complexity is O(S). We can express the expectation value
of S after processing T data points as follows:

E [S] = bαc+ α

T∑
k=bαc+1

1

k
= bαc+ α

(
HT −Hbαc

)
(9)

where Hi is the i-th harmonic number. Asymptotic expan-
sion of HT reveals a complexity of O(log T ). We use this
result to construct two different versions of our algorithm.
The first version MiseD works with this slowly growing dy-
namic query anchor sample. For a second version MiseF , we
fix the sample size S and instead operate with slow changes
of α over time. This means we modify α in each step by solv-
ing Equation 9. This has to be done numerically since the
equation has no analytic solutions. In Figure 5 this would
correspond to a slight change of the decay rate. Obviously
each modification to α introduces a small error since the cur-
rent query anchors in the sample have been sampled with a
probability that has been slightly too large. To account for
the accumulation of these slight errors, we delete query an-
chors with a probability equal to the ratio of the Pn values
calculated once with the old and once with the new α. This
exactly corrects the error and maintains a proper reciprocal
distribution over time. Overall, the two versions of Mise
have insert complexities of O(log T ) for MiseD and O(1) for
MiseF .

6. EXPERIMENTS
The focus of our experimental evaluation is to analyze

Mise regarding both performance and estimation quality.
In particular, we will analyze how Mise performs overall
in a typical online setting (Section 6.1), how we can match
the insert frequency to the stream frequency (Section 6.2),
and focus on estimation quality in Section 6.3. We are not
aware of any direct competitor that supports online mutual
information queries. Therefore, we compare our approach
to a static Kraskov estimation, which we allowed to use a
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(theoretically) infinite data reservoir. By using the same es-
timation principle based on an infinite reservoir as a ground
truth, we can focus on the effects introduced by our finite
summarization of the stream. This frees us from reevalu-
ating the properties of Kraskov estimation in general, and
we refer to existing studies [19, 30, 20, 22] for details. The
guidelines on choosing parameter k obtained in these stud-
ies directly apply in our case as well: The best trade-off
between the statistical and the systematic estimation error
is typically in the range of very low k values (e.g. k ≤ 4).
Since our evaluation scheme measures the relative estima-
tion error we focus on the case that is most challenging: We
use k = 1 in all our experiments, which maximizes the sta-
tistical error of Kraskov estimation and therefore maximizes
the effect of using a finite reservoir in Mise.

A relative evaluation also allows us to run our experiments
on a broad range of data streams, including a large number
of real-world datasets. These data streams contain natural
fluctuations of mutual information over time. Figure 6 shows
an example of such dynamics found in our real world data:
The top plot shows the raw time series themselves; in the
example the quotes of the IBM and GE stocks. The middle
plot shows mutual information measured using a 6 month
sliding window. Compared to the bottom plot, which uses a
5 year sliding window, we can see that mutual information
clearly shows different changes over these two different time
scales. Such a “running mutual information estimate” also
gives the first impression of the potential of Mise: We can
see that our estimation of Mise and the reference imple-
mentation give almost identical estimation results, i.e., esti-
mation based on the finite summarization of Mise shows no
significant difference to estimation from an infinite reservoir.
However, as a result of the online processing in Mise, the to-
tal time to generate the graphs in Figure 6 were 3.8 minutes

for Mise and 112.1 minutes for the reference implementa-
tion. In the following we will quantify these performance
improvements systematically.
Experimental Setup. We have conducted all experiments
on an Ubuntu 12.04 system running on an Intel R© i3-550
processor with 8 GB RAM. We have implemented Mise in
Scala 2.10 using Oracle JVM 7 as runtime environment.

6.1 Overall Performance
Our reference implementation of static mutual informa-

tion estimation on a data stream works as follows: The in-
sert operation simply appends a data sample to a theoret-
ically infinite reservoir, while the query operation performs
Kraskov estimation on the specified query window using the
infinite reservoir. Since this reference approach provides no
means of query precomputation, there is obviously a pro-
nounced imbalance between the extremely cheap insert op-
eration and the high complexity of the query. Thus, when
comparing Mise to this reference implementation the crucial
question is how the number of inserts compares to the num-
ber of queries. We express the ratio of queries-to-inserts
by QIR = #queries/#inserts. Obviously, when there are no
queries at all (QIR = 0), all query precomputations of Mise
are futile and there is nothing to speed up. On the other
hand, when there is a large number of queries compared to
the number of inserts (QIR� 1), the benefits of Mise’s pre-
computations can be made arbitrarily high. Therefore, we
specifically analyze low QIR values to determine the point
where the benefit of Mise begins.

To measure the speed-up we determine the ratio of the
total runtimes for Mise and the reference implementation
of calculating a “running mutual information estimate” (like
shown in Figure 6). This running estimate is performed
by inserting and querying the stream with a specific QIR
ratio, e.g., for QIR = 0.1 we perform a query after every
10 inserts. Regarding the time offset of the queries we set
o = 0. This means that the queries operate in the region of
highest query anchor density, and thus, performance of Mise
is worst. The data stream was sampled from a Gaussian
distribution (ρ = 0.1) with a length of 100000. We started
the measurement of the total runtime after the number of
processed samples exceeded both the window size and the
reservoir size in order to exclude warm-up artifacts.

The results of this experiment are shown in Figure 7. The
main factors determining the speed-up are the query window
size and the size of the reservoir used by Mise. The latter
is determined either by α or S for the dynamic or fixed ver-
sions. Due to the more intuitive interpretation of the fixed
reservoir size S we focus on this variant. Even though we
focus on small QIR ratios, we can see that Mise can lead



0 20000 40000 60000 80000 100000
Stream Length

0.1

1

10
Ti

m
e 

/ 
In

se
rt

 [m
s]

dynamic  α=100

dynamic  α=1000

fixed  S=100

fixed  S=1000

fixed  S=10000

Figure 8: Insert processing times

to drastic speed-ups. We visualize the speed-up threshold
of 1.0 where usage of Mise starts to make sense by a yellow
color; green and red indicate faster and slower runtimes for
Mise respectively. It is interesting to see that a speed-up is
even possible for the very low QIR = 0.01, where in fact 99%
of the precomputations in the inserts were in vain. Overall
we can conclude that there is a large potential for speed-ups
as a result of our precomputations. Obviously this is espe-
cially pronounced for applications where both the window
size and offset are free parameters for each query, and thus,
having more queries than inserts is usual.

6.2 Scaling with Stream Frequency
The results of the previous experiment can also be inter-

preted as follows: Since Mise performs parts of the necessary
query computations while processing the stream itself, it is
possible to tune Mise such that its insert speed perfectly
matches the frequency of the stream. This would mean that
Mise performs just as much precomputations as possible
to keep up with the stream and leads to maximization of
the query quality for the given stream frequency (cf. Sec-
tion 6.3). Thus the essential question becomes: How does
the reservoir size of Mise influence the processing speed of
the stream? We evaluate this question for both Mise ver-
sions, i.e., we analyze the insert speed in dependence of α
and S for the dynamic and fixed reservoir versions respec-
tively. Intuitively a higher S or α means higher estima-
tion quality, but a slower insert processing. A user typically
might want to set S or α to the largest possible value that
still allows to process the given stream frequency.

Figure 8 shows a measurement of the insert times for dif-
ferent α or S values. It shows how the runtime of a sin-
gle insert (y-axis) changes with the stream length (x-axis).
We obtain the runtime of a single insert from the runtime
of performing 5000 inserts in a batch. Again we sampled
the data stream from a Gaussian distribution with ρ = 0.1.
For the fixed Mise version we can see that the runtime of
a single insert indeed becomes constant once the stream
has reached a length corresponding to the fixed reservoir
sizes S=100, 1000, 10000. For the dynamic version, the in-
sert time slowly increases over time due to the logarithmic
growth of the reservoir. We can see that for typical sizes of
the reservoir the corresponding stream processing frequency
is in the order of ∼100 Hz (for S = 10000) up to ∼20 kHz
(for S = 100). Thus, despite performing query precompu-
tation while processing the stream, it is possible to operate
on very fast streams with sampling periods in the order of
a millisecond. Furthermore, there is no dependence of in-
sert performance on the stream length for the fixed Mise
version. Thus, there is no degradation over time, which is a
key property of efficient stream processing [3].

6.3 Quality
We now want to turn to the question how estimation from

a limited reservoir affects the estimation quality. Therefore,
we compare Mise to a variant of Kraskov estimation which
also operates on a limited data reservoir. We implemented
the limited data reservoir based on the two most promi-
nent sampling approaches: Traditional reservoir sampling
(RS), and sampling based on a sliding window (SW). We
use static Kraskov estimation from an unlimited data reser-
voir as ground truth for the quality assessment. To facilitate
the comparison we focus on the Mise variant with a fixed
reservoir size. This allows us to use exactly the same reser-
voir size for RS, SW, and Mise. To pay attention to the
challenge of a stream length being much larger than the
reservoir size, we have used a reservoir size of S = 100 in
the following experiment.
Data. We compiled a set of 26 data streams from various
different sources. Our goal was to obtain a very large diver-
sity of different streams, i.e., diversity in distributions and
dynamics. Therefore the set contains various streams from
different real world datasets plus a small number of syn-
thetic streams. This includes streams of IMU sensors (vari-
ous combinations of gyrometer, accelerometer, magnetome-
ter streams), climate streams, smart meter streams, stock
streams, and electrocardiogram measurements. All features
of the data streams are continuous variables, with a float-
ing point precision between 4 and 10 decimal digits. Table 1
shows a summary of all data streams. Preliminary results on
quality did not show a strong dependence on the individual
data streams. Therefore, we present the aggregated qual-
ity over all streams in the following, and provide results on
the individual datasets on our supplementary website.2This
means that we calculate the quality measures discussed be-
low for each query individually and aggregate by taking the
average of these measures for all queries obtained from all
data streams.

Stream description Length # streams used

Pamap (IMU data) 198000 5
Climate data (temperature vs. air pressure) 21124 1
Smart Meter 17568 5
Stock time series 11122 5
Congestive Heart (two ECG measurements) 300000 1
Synth: Static Gaussian ρ = 0 ∞ 1
Synth: Static Gaussian ρ = 0.95 ∞ 1
Synth: Static random mixture of uniform distributions ∞ 2
Synth: Dynamic random Gaussian mixture ∞ 5

Table 1: Set of data streams

Queries. The queries we perform on our data streams range
from a window size of 10 up to 1000. We perform these
queries in appropriate steps that avoid an overlap of the
query windows to ensure independent query results. We use
three different ∆ values (0, 1.0, 10.0) to determine the offset
of the query window. Using ∆ = 0 means that we use an
offset o = 0 (i.e., we deliberately include the most favorable
case for SW), while o follows the multiscale principle in the
non-zero cases.
Quality Measure. A first question when performing a
certain query on a system with a limited reservoir is whether
the system actually has information available for the given
window boundaries. Therefore, our first quality measure
simply is the percentage of “successful” queries defined as:
A query is successful if the query window contains at least
a single element, allowing to compute a result. In case the



Figure 9: Overall quality results on all data streams

system can answer a query, we are interested in how the
limited reservoir influences the estimation in both bias and
variance. Therefore, we use the two quality measures (Î −
IRef ) and σÎ . Here Î refers to estimation from the limited
reservoir, while IRef is the ground truth obtained from the
infinite reservoir; σÎ is the sample standard deviation.
Results. The results of our quality experiment over all data
streams are shown in Figure 9. Regarding the success rate
of queries we can clearly see the advantage of the Mise sam-
pling: For ∆ = 0 and ∆ = 1.0, the success rate is 100%.
The result shows that the success rate does not depend on
the window size. It rather is constant for a given family
of queries with a fixed ∆. RS in contrast never achieves a
100% success rate. By the nature of RS, we can clearly see
the poor performance for small window sizes (e.g., low suc-
cess rate, large bias). On the other hand for sliding window
sampling, we obtain poor performance for large windows,
visible for instance by the sudden drop of the success rate
as soon as the offset is larger than the fixed window of size
100. A query with ∆ = 10 simply has always been too far
into the past and could never be answered. In the second
row of Figure 9, we can see that all approaches show a small
negative bias, which is a general issue when estimating from
very little data. We can see that Mise shows much better
bias and variance (third row) compared to Kraskov estima-
tion from limited reservoirs. This is caused by the more
flexible placement of query anchors over time and the added
information that is used as a result of the online process-
ing. Furthermore the dependence on the query window size
is much lower compared to RS or SW sampling. For SW
sampling the bias and variance are obviously zero as long
as the query window is fully covered by the sampling win-
dow. However, we can see that, even in the favorable case
of a zero query offset (∆ = 0), estimation quality quickly
degrades as soon as the query window size exceeds the one
of the sampling window. Overall we can conclude: RS and
SW fail either for small or large window sizes respectively;
Mise achieves the overall best results, and is most stable
w.r.t. shifting a query into the past, as a result of featuring

Figure 10: Quality with different reservoir sizes
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Figure 11: Average marginal counts that have to be
stored over time

a multiscale sampling scheme.
In another experiment we want to show that the estima-

tion bias and variance of Mise can be reduced arbitrarily by
increasing the reservoir size. For this experiment we use the
dynamic version and vary α from 200 to 1000. The queries
have ∆ = 1.0. See Figure 10 for the results. We can see
that the estimation variance becomes almost independent
of the window size in the range where query anchor satura-
tion does no longer occur. The takeaway is that the reservoir
size gives very fine control over the overall estimation qual-
ity. Combined with the results on insert speed this means
that bias-free estimates with very low variance are possible
without difficulties, while maintaining insert frequencies in
the range of 1000 Hz.

6.4 Growth Rate of Marginal Points
In addition to the theoretical results of Section 5 and the

supplementary material,2 we conclude our experiments with
an empiric evaluation of the question of how the number
of marginal points evolves over time. In the following ex-
periment we determine the empirical growth rate for each
of our data streams (cf. Table 1) individually. For each
data stream, we randomly pick 1000 data points from the
first half as test query anchors. Next, we insert subsequent
data points into the test query anchors. Finally, we query
all 1000 query anchors for the marginal counts in time for-
ward direction with a varying query window size. Figure 11
shows the average marginal counts depending on this query
window size, which corresponds to the number n of inserted
data points. As a visual reference we also plot the theoret-

ical result
√
π

2
n

1
2 from our supplementary material2 for the

specific case of a uniform distribution.
Overall, the results in Figure 11 reveal an interesting find-

ing: For most data streams we observe a growth rate of ap-

proximately n∼
1
2 . This result makes sense considering that



the overall spectrum of growth rates for each individual an-
chor ranges from constant to linear depending on its position
in the data distribution (cf. Section 5). Apparently, the av-
eraging of all the individual growth rates seems to yield a
similar rate to the one obtained formally for the uniform
distribution.

Another remarkable result is the absolute value of the
marginal counts itself, indicating that we need an extraor-
dinarily small number of marginal points to represent large
time frames: A query anchor with an age of 20000 time
units has to store less than 150 marginal points on average.
Thus, the ratio of stored marginal points vs inserted points
is ∼0.75% after 20000 time units, or ∼0.09% after 1 million
steps. This strong compression ratio shows that it is cheap
to maintain “old” query anchors, which can explain the very
good overall performance of Mise observed in the previous
experiments.

7. CONCLUSION
In this work we have proposed a framework that allows

a user or data mining algorithm to estimate mutual infor-
mation on a data stream in arbitrary query windows. To
our knowledge, it is the first such estimation technique that
incorporates a summarization allowing online query precom-
putation. Furthermore, we have proposed a novel sampling
scheme which provides a solution to the infinite nature of
the stream while maintaining information equally over mul-
tiple time scales. Given these properties the experiments
show that our approach clearly outperforms traditional ap-
proaches in the online context.
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