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Abstract—Anomaly detection has been a major research area
in machine learning with deep ensemble models showing excep-
tional performance. However, formal verification of robustness
for anomaly detection in general, and ensemble models in
particular, has been mostly neglected. Moreover, given an already
trained, non-robust model, there is no way to adapt it for
robustness as a post-processing step as of yet.
By harnessing properties of ensemble methods - in particular of
the DEAN model - we are the first to post-robustify a model
via submodel selection. Beyond this new capability, our method
significantly increases verification scalability by employing the
inherent properties of ensemble methods.
Our experiments show that the DEAN model is most suitable
for our method: it proves to be the most robust from the start,
allows for post-robustification and keeps a stable runtime across
all datasets considered.

Index Terms—Robustness, formal verification, anomaly detec-
tion, ensemble methods

I. INTRODUCTION

Anomaly Detection has been an actively researched machine
learning problem for several decades. Its use cases range
from fault detection in machines [3] to credit card fraud
detection [24] as well as to safety-critical areas such as medical
diagnosis [7] or infrastructure control [12]. More recently,
outstanding performance was attained by anomaly detectors
combining ensemble methods and deep learning.
While researchers made a lot of progress in designing algo-
rithms for increased detection performance, so far formal ver-
ification of these deep anomaly detectors has been neglected.
Yet, especially in safety-critical areas, it is of utmost impor-
tance to formally state and prove guarantees about a model’s
behavior. This need is exacerbated by the discovery of so-
called adversarial samples: inputs designed to fool the model
into a wrong prediction [20]. For the anomaly detection task,
this corresponds to false positive samples indistinguishable
from normal samples in the train dataset.

From these adversarial samples, a research branch defending
against such attacks has emerged. Methods such as adversarial
training [9], [13] make neural networks more robust against
adversarial samples by adjusting their training. If however
these methods yield a non-robust model, there is no method
to fix it, i.e., robustify it as a post-processing step.
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Fig. 1. Original MNIST sample (left) and its adversarial (right). Differences
between the original and the adversarial have been enlarged to make them
visible. The original sample is predicted as normal. The pseudo-adversarial
p-adv on the other hand is predicted as anomalous even though it is nearly
indistinguishable from the original.

We address the aforementioned challenges by using the inher-
ent properties of ensemble methods. Given an already trained
ensemble model, we first assess its robustness by a divide-
and-conquer approach. By splitting it up into its submodels,
solving a verification problem for each submodel and merging
the intermediate results, we obtain both upper and lower
bounds for the largest anomaly score in a predefined region.
Moreover, the intermediate results allow us to distinguish be-
tween submodels that either do or do not harm the ensemble’s
robustness. Thereafter we can create a new, robust ensemble
model by using only the non-problematic submodels. Thus we
obtain a post-processing method that - within certain bounds
- robustifies any such ensemble to the desired degree.
Beyond post-robustification, our method is the first to pro-
duce a so-called pseudo-adversarial for an ensemble method
as shown in Figure 1. These are inputs to the ensemble that
are most likely being predicted as anomalous by the ensemble
model and narrow down the approximation gap between the
upper and lower bound of the anomaly score.
Using ensemble methods alleviates another major issue of
neural network’s formal verification: scalability. As shown
by [25], the runtime of a verification method increases expo-
nentially with the complexity of neural networks. However,
the use of ensemble methods allows to elegantly circumvent



this problem as it is much faster to verify many small neural
networks compared to one large neural network.
We highlight the use of our robustification method on the
DEAN ensemble method [11]. This model combines several
advantageous properties: since it employs feature bagging
with a large set of simple submodels, we can scale up the
verification to datasets of any dimension. Moreover, due to its
simple architecture, any particular submodel can be verified
fast and with almost no approximation loss by an SMT solver.
With our experiments we show that we can successfully post-
robustify a given DEAN ensemble without impairing its pre-
dictive performance. Moreover, we compare the robustness of
the DEAN model to other well-known deep anomaly detectors.
As it yields the best performance both in terms of scalability
and robustness we deem it most suitable for verifiable anomaly
detection.

II. RELATED WORK

A. Deep Anomaly Detection Methods

Neural networks have shown exceptional performance in the
task of anomaly detection. They assign an anomaly score to
each input and compare it to a threshold to determine anoma-
lousness. Due to their implicit feature learning, they are partic-
ularly well-suited for complicated distributions on high dimen-
sional datasets [8]. For the purpose of post-robustification, we
must combine this property with formal verification. However,
formal verification proves to be a notoriously difficult task for
large-scale neural networks. Therefore we need models that
are complicated enough to model complex distributions and
simple enough to be verified.
In this work, we primarily employ the DEAN model [11]
because it is an ensemble of many simple submodels. Thereby
each particular submodel can be verified while the entire
ensemble retains its predictive capability.
Moreover we compare DEAN to two representative alterna-
tives: an autoencoder-based ensemble called RandNet [4] and
DeepSVDD [18]. Both models show state-of-the-art perfor-
mance in anomaly detection, yet as we will see, they are not
competitive in terms of both robustness and scalability.

B. Neural Network Verification

Formal verification of neural networks can be categorized
into exact approaches such as SMT solvers [6], [10] and
approximation approaches such as abstract-interpretation [19],
[23], [27]. For our purposes, we will make use of SMT solvers
as this allows us to obtain two types of results for a predefined
region: an upper bound on the anomaly score as well as a
lower bound derived from a pseudo-adversarial. Thus we can
estimate the approximation gap to the true largest anomaly
score in that region. Abstract-interpretation based approaches
on the other hand, could only provide us with an upper bound
and do not yield a pseudo-adversarial for ensembles.
However, exact solvers are notorious for being much slower
than approximation approaches. We counteract this deficiency
by feature bagging and limiting the complexity of each

submodel. Overall this leads to an acceptable runtime while
producing well-approximated robustness results.

C. Robustifying against Adversarials

Most existing methods, including [5], [9], [13], [26], try to
incorporate robustness into their training methods. However,
if this training does not yield a robust model, one can only
retrain it without the guarantee of obtaining a robust model
thereafter. Instead, we aim to adjust an already trained network
to become provably robust.

III. RECALL: DEAN MODEL

This section gives the necessary background on the DEAN
model [11] we use to highlight the use of post-robustification.
Beyond being on par with other state-of-the-art deep anomaly
detectors, DEAN has some very favorable properties for
robustness verification. The DEAN model is a particular
type of deep anomaly detector given by an ensemble D =
(f1, . . . , fm) of relatively simple neural networks. Each sub-
model fi consists of a fully-connected neural network with
ReLU activations in each hidden layer without constant bias.
The input dimension b of fi is set as a hyperparameter because
DEAN employs feature bagging on the input: for an input
x ∈ RN to D and submodel fi, the input x̃i ∈ Rb denotes the
projection of x onto the features for fi. These networks are
trained to transfer normal points close to a constant qi ∈ R
using the following equation:

Lfi(x̃i) = (fi(x̃i)− qi)
2

As [11] suggest, we set this constant qi = 1 for training and
use qi = mean(fi(xtrain)) for evaluation.
Since the submodels do not have constant bias terms, they
cannot simply learn the constant function fi(·) = qi. Instead
the network needs to learn parameters in such a way that
normal inputs result in a low deviation from qi while all other
inputs exhibit large deviations. Therefore this loss can be used
to measure anomalousness for a given input similar to [18].
Finally we define the anomaly score obtained by DEAN given
by

Anom(x) =

√√√√ 1

m

m∑
i=1

Lfi(x̃i)

combining all the outputs and thereby incorporating all input
features of x. Moreover it will average out too large deviations
occurring in e.g. just one submodel, resulting in a statistically
robust model.

IV. PROBLEM SETTING

There are several notions of robustness both for deep
anomaly detectors [15], [29] and for neural networks in general
[28]. While a lot of emphasis has been put on training models
to be robust, once a model exists it can only be shown or
measured whether it is robust. However, given a non-robust
model, it would be useful to just slightly adapt it in order
to make it robust, instead of retraining a new model from
scratch.



Therefore this section poses the challenge to post-process a
given model such that it becomes robust. To this end, we
will formally introduce the post-robustification problem and
provide the necessary definitions.

A. Post-Robustification

Inspired by the robustness against adversarial samples in the
realm of supervised learning, we want to locally post-robustify
models for anomaly detection around a given input x∗. More
precisely, this paper addresses the following problem:

Problem 1 (Post-Robustification). Given an evaluation metric
m and a non-robust model-input pair (D,x∗), create a new
model D∗ such that (D∗, x∗) is robust and m(D∗) −m(D)
is maximized.

This problem definition reflects that we do not only want
to robustify our model on x∗, but that we also do not want to
trade off too severely with respect to a given evaluation metric.
Otherwise post-robustification might result in a degenerate
model that maps all inputs to the same output: a model that
is very robust but not at all useful.
Note that, assuming a monotone m, we do not want to mini-
mize |m(D∗)−m(D)|: if D∗ performs even better according
to the evaluation metric, we do not consider this a problem.
As this problem definition is very general, in order to work
with it we need to make it more concrete by giving the model,
the evaluation metric and the notion of robustness: in this pa-
per, we choose the previously defined DEAN model evaluated
by the standard AUC score reflecting the predictive capability
in the task of anomaly detection. The precise definition of
robustness will be given in the next section.

B. Adversarial Robustness

Our robustness definition is the direct adaptation of adver-
sarial robustness from supervised learning to anomaly detec-
tion. Essentially, we consider the anomaly detector as a binary
classifier and apply the definition of [13] to it.

Definition 1 (ε-adv-rob). Let D be an anomaly detector, dist
a distance function and x∗ ∈ RN such that Anom(x∗) < τ .
We say that D is ε-adversarial-robust at x∗ if and only if for
all inputs in x∗ ± ε := {x ∈ RN : dist(x, x∗) ≤ ε} the
Largest Anomaly Score is less than τ :

LAS(D,x∗ ± ε) := max
x∈x∗±ε

Anom(x) < τ

According to this definition, a normal input x∗ is robust if
and only if all surrounding inputs are normal as well. Thus
if we can prove ε-adversarial-robustness, we know that there
cannot be an adversarial sample in x∗ ± ε.
Typically dist will be given by an Lp distance such as L1 or
L∞ and for the remainder of this paper we will work with
the L∞ distance.
Please note that this is a much stronger notion of robustness
than testing against a finite set of adversarial samples. In
contrast, we aim to verify the model against infinitely many
points defined by the ε environment of x∗. It corresponds to
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Fig. 2. Verification Process of the DEAN model. We first split DEAN and
the input (left) up into the submodels and their features. Thereafter on each
submodel both wce and u-adv are calculated (middle) followed by merging
the results into the upper bound and the pseudo-adversarial p-adv (right). Note
that due to feature bagging each submodel’s u-adv does not cover all input
dimensions.

the same notion of robustness against adversarial attacks in
supervised learning [13].

V. SOLUTION FRAMEWORK

This section details how to check a given DEAN model for
robustness and how to post-robustify it if necessary.

A. Robustness Verification

The general procedure of our verification framework is
given by splitting up the ensemble model, calculating the so-
called worst-case-error (wce) and u-adv [2] on each submodel
and merging the results. In the following we provide details
on these steps.

1) Splitting: We split the DEAN model into each of the
submodels it consists of. Thus, if D = (f1, ..., fm) is the
DEAN model, we consider each fi separately in the next step.
Note also that for the next step we need to respect the feature
bagging. If we want to check robustness for a given input x∗

each submodel fi is verified on x̃∗
i ± ε.

2) Submodel Verification: For each submodel fi we solve
an adapted version of the worst-case-error problem posed by
[2]. To be precise, for each model fi we will approximately
calculate

wce(fi, x̃
∗
i ± ε) := sup

x∈x̃∗
i ±ε

∥qi − fi(x)∥∞.

by employing SMT solvers. These solvers can check whether
∥qi − fi(x)∥∞ is greater than a given δ and thus allow us to
narrow down wce with a binary search over δ. Moreover, if
the SMT solver returns True for a given δ̂, it will additionally
return a sample x̂ such that ∥qi − fi(x̂)∥∞ > δ̂. By keeping
track of the largest realized error we can thus obtain an
unsupervised adversarial u-adv which is an input that realizes
wce up to a predefined accuracy1.

1More details can be found at www.github.com/KDD-
OpenSource/Robustify



3) Merging Outputs: From the two outputs obtained for
each submodel, we will extract an upper and a lower bound for
LAS(D,x∗ ± ε). Recall that if the upper bound is lower than
the anomaly threshold τ we prove local robustness. The lower
bound on the other hand is used to estimate the approximation
gap to LAS(D,x∗ ± ε).
We Upper bound the Largest Anomaly Score by:

ULAS(D,x∗ ± ε) =

√√√√ 1

m

m∑
i=1

wce(fi, x̃∗
i ± ε)2

We replace the error of each model with the largest error that
can possibly manifest for each submodel. This is an overap-
proximation of LAS(D,x∗ ± ε) because different submodels
might realize their wce on different inputs. However the DEAN
model must of course be evaluated on a single input only. If
the upper bound is low enough, it serves as proof that the
ensemble model is robust.
We construct the lower bound by combining the adversarials
u-adv of each submodel fi into an input point for DEAN.
To this end we leverage a property of the adversarials u-adv
obtained by our subroutine: usually they are at a corner of the
input space x̃∗

i ± ε. Thus for (x̃∗
i )k being the k’th dimension

of x̃∗
i they are given by yk ∈ {(x̃∗

i )k + ε, (x̃∗
i )k − ε}.

Taking the perspective of a particular dimension k, there
are several submodels that have this dimension as input due
to feature bagging. To combine the adversarials we simply
employ a majority vote among these submodels to determine
which side of the corner we choose.
Thus let J be the index set of submodels using feature k
as input and {yjk : j ∈ J} be the corner points obtained
for dimension k by their respective unsupervised adversarials.
Then we construct a pseudo-adversarial for the ensemble as

p-adv(x∗ ± ε)k := mode{yjk : j ∈ J}.

From this pseudo-adversarial we extract a lower bound for
LAS(D,x∗±ε) by simply calculating Anom(p-adv(x∗±ε)).
Essentially, we try to combine the adversarials of each sub-
model in such a way, that many of the submodel’s errors
become large thereby tailoring a pseudo-adversarial for the
ensemble model.
Even though this results in a lower bound for the DEAN model,
we will experimentally show that it is close to the upper bound.
Thus we achieve a small approximation gap.

B. Robustify

Endowed with the capability to determine robustness, we
will now present a simple procedure with which we can
post-process a non-robust model input pair based on each
submodel’s wce such that it becomes robust: we sort all
submodels by their wce and remove them one by one starting
with the largest wce until ULAS(D̂, x∗±ε) of the remaining
models D̂ is below the anomaly threshold τ . This way we
can guarantee that in x∗± ε the resulting ensemble will never
predict anomalous ensuring robustness.
This seemingly simple procedure has to be executed with care

given the following caveats: first, by reducing the number
of models we might impair the predictive capability of the
ensemble. We will show experimentally that this trade-off is
not severe, but of course this depends on the level of robustness
one wants to achieve. Secondly, there is a limit of robustness
that we cannot overcome simply given by the smallest worst-
case error of any submodel. Thus, if ε is too large (if we
want too much robustness) post-robustification by removing
submodels becomes impossible. Note that this algorithm can
be applied to any anomaly detection ensemble and is not
limited to DEAN.

VI. EXPERIMENTS

This section highlights the use of post-robustification for a
given DEAN model. We will start by looking into a single
ensemble model trained on MNIST, showing what useful
results can be obtained with our method. Thereafter we will
compare DEAN with a) an autoencoder ensemble (RandNet)
[4] and b) the DeepSVDD [18] model on 8 other real-world
datasets highlighting that DEAN models are more robust from
the beginning, allow for post-robustification on each of these
datasets, and - in contrast to RandNet and DeepSVDD - keep
a constant runtime across all datasets.
The code and more details on our experiments can be found
at www.github.com/KDD-OpenSource/Robustify.

A. Deep Dive MNIST

Our first experiments are conducted on the MNIST dataset.
Here we train an ensemble of 1000 DEAN submodels with
feature bagging of size 32 to highlight properties of our
Robustify method on a single ensemble model.

1) Remaining Predictive Capability: Assuming that we
started with a powerful predictor, our first experiment ad-
dresses whether by robustifying the model loses its predictive
capability. As shown in Figure 3, after post-robustification for
one point we can keep 856 of the original models and sacrifice
almost no AUC. Indeed we could have deleted more than 50%
of the submodels before witnessing a severe drop in AUC
score.

2) Approximation of the Largest Anomaly Score: As we
cannot directly calculate LAS, we must approximate it. Recall
that we obtained an upper bound on the LAS by aggregating
over each submodel’s wce and a lower bound by combining
each submodel’s u-adv into a pseudo-adversarial for the DEAN
model. We can use both bounds to test how accurate the
approximation of LAS for the DEAN ensemble is. Since we
have no theoretical guarantee on the size of the approximation
gap, we empirically evaluate it for a given DEAN model on
20 subsamples. Surprisingly, the relative error between the
approximation gap and the actual LAS is always less than
2% showing that our approximation scheme is very precise.

3) Local vs. Global Robustness: Finally, we investigate the
global effects of local robustification.

Figure 4 shows that we significantly decrease ULAS for
other normal samples by local robustification. It appears that
the models we delete by robustifying one sample also cause
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Fig. 4. Gaussian KDE plot of ULAS of 20 samples before (black) and after
(green) application of Robustify. After robustifying on a particular sample we
calculated ULAS on different samples to obtain the green density.

high wces on other samples. Therefore our method increases
robustness not only locally but also globally.

B. Comparison to RandNet and DeepSVDD

This section compares DEAN to two representative, alterna-
tive models: RandNet [4] and DeepSVDD [18]. While RandNet
consists of an ensemble of autoencoders, thereby being directly
comparable to DEAN, DeepSVDD consists of a single, large
neural network. Thus even though we cannot directly apply
our post-processing method to DeepSVDD, we highlight how
DEAN outperforms it with respect to runtime and robustness.

1) Datasets: We choose eight different datasets with vary-
ing number of features. These are chosen from [17] and [21],
such that each algorithm achieves a similar AUC score as
shown in Table I.

2) Ratio Comparison: As the anomaly scores of different
models can have different scales, equation 1 defines the so-
called Change Ratio (CR) to make the results on different
models comparable. It indicates by what factor ULAS needs
to be reduced to obtain a robust model:

CR(D,x∗, ε) :=
ULAS(D,x∗ ± ε)

τ(D)
(1)

Dataset Features RandNet DEAN DeepSVDD
pageblocks 10 0.9231 0.9577 0.8748
segment 18 0.9982 0.9998 0.9981
steelplates [16] 27 0.7521 0.7329 0.718
wbc 30 0.941 0.9751 0.9336
satellite 36 0.8321 0.8196 0.8233
qsarbiodeg [14] 39 0.8734 0.7425 0.821
gasdrift [22] 128 0.9791 0.9319 0.9562
har [1] 561 0.9786 0.9529 0.9371

Average 0.9097 0.8890 0.8828

TABLE I
ROC-AUC SCORES ON THE 8 DATASETS USED IN THIS PAPER
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Fig. 5. Change Ratio and runtime on eight datasets averaged over 10 runs
and 20 samples each. The computational effort for RandNet and DeepSVDD
increases with the number of features (note that the datasets are sorted by
their number of features). For the highest dimensional dataset ”har” with 561
features, it was impossible to verify the autoencoder due to timeout. Notice
that in contrast to the other algorithms, DEAN has constant runtime and the
lowest Change Ratio.

The upper part of Figure 5 shows that for every dataset,
DEAN is already the most robust, often having a CR ≤ 1.
While DeepSVDD is already less robust, RandNet has change
ratios more than 100 times higher than those of DEAN. At least
partly this is due to a larger approximation error of ULAS
as the different algorithms use different norms (L2 or L∞)
for their anomaly scores. Therefore the simple architectures
of each of DEAN’s submodels favor a precise calculation of
ULAS.
The bottom part of Figure 5 shows the runtime of the ver-
ification algorithm. As the x-axis is sorted by the number
of features in each dataset, we show the drastic increase
in required verification time both for RandNet and, to a
lesser extent, also for DeepSVDD. In contrast, the required
verification time for the DEAN model stays constant over
all datasets as feature bagging allows keeping the number of
ReLU nodes in each submodel the same.
Even though DEAN seems to have a larger runtime on lower-
dimensional datasets, note that - unlike DeepSVDD - its



verification process can be parallelized along the submodels.
Moreover it depends linearly on the number of submodels
verified. Therefore the eventual runtime of DEAN verification
can be controlled both with the number of submodels to be
verified and with the number of CPU cores available.

VII. CONCLUSION

In this paper, we are the first to study the formal verification
of ensembles for anomaly detection. We show that especially
the DEAN model seems suitable for this task, as it outperforms
common alternatives in terms of robustness. Also, using fea-
ture bagging, DEAN achieves a verification time independent
of the number of features of the dataset. To our knowledge, this
is the only algorithm that achieves sub-exponential verification
time.
We also introduce Robustify, a method allowing to further
improve the robustness of the ensemble. We show using
DEAN that this method allows to drastically increase the local
robustness of the model while maintaining the same anomaly
detection capability.
However, to achieve global robustness, we require a more pow-
erful algorithm. This could be a method similar to boosting,
scaling the impact of less robust submodels differently and
thus reaching global safety against adversarial attacks. We
leave these ideas for future work.
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