
Reconstruction-based unsupervised drift detection
over multivariate streaming data

Daniil Kaminskyi
Department of Computer Science

TU Dortmund University
Dortmund Germany

daniil.kaminskyi@tu-dortmund.de

Bin Li
Department of Computer Science

TU Dortmund University
Dortmund Germany

bin.li@tu-dortmund.de

Emmanuel Müller
Department of Computer Science

TU Dortmund University
Dortmund Germany

emmanuel.mueller@tu-dortmund.de

Abstract—In real-world applications, data streams are gener-
ated all the time. Real-time data processing of complex multi-
variate data becomes essential for many downstream analysis
tasks. However, real-world data is not bound to be of the same
distribution - the environment where it is recorded could be
rapidly evolving, making it a challenge to apply a stationary
model throughout the whole flow of data. Moreover, labels are
often expensive to acquire or delayed in such scenarios. This
paper considers the severe problem in an unsupervised setting,
where we detect the distributional drifts in the input data stream
without considering the data labels or specific classifiers.

We propose AECDD (Autoencoder-based Concept Drift Detec-
tor), a reconstruction-based unsupervised drift detection model
using an Autoencoder to track changes in data distribution. More
specifically, instead of detecting drifts by tracking the classifi-
cation error change as in many existing approaches, we track
the reconstruction error of the Autoencoder in an unsupervised
manner. Our empirical evaluation shows that AECDD captures
the drifts well in multivariate data streams. Finally, we also
demonstrate the drift in the reconstruction error space by an
intuitive visualization.

Index Terms—Concept drift, Autoencoder, Streaming data,
Unsupervised learning

I. INTRODUCTION

In the era of big data, a vast amount of sensor data is

collected all the time. Analyzing streaming data in real-time

is essential in various application scenarios. Distributional

changes in real-time data streams, that are sometimes evolving,

sometimes sudden, are called concept drifts. Concept drift

detection has become a prominent topic in the current research.

The reliability of models used for processing big data streams

depends on how well they adapt to changes in data. Distri-

bution drifts can have a heavy impact on the performance of

algorithms as the model trained on previous data does not fit

the ever-changing stream. Moreover, the arriving velocity of

the data stream often leaves domain expert few time to label

the data in real-time.

The concept drift detection task is solved in both supervised

and unsupervised learning manners. The availability of ground

truth at any time narrows the detection down to observing the

changes in the underlying probability distribution of P (X, y).
The supervised drift detection approach requires labels for the

detection models, which is a severe constraint for a significant

amount of real-world applications. Detecting changes in P (X)

itself using an unsupervised approach is desired. To this

end, a multitude of methods to detect concept drift have

been proposed and have been tested on effectiveness [1].

Generally, such models require parts of data with varying

sizes kept in memory to perform dissimilarity measurements.

This, however, brings up another problem when dealing with

multivariate streaming data.

In a real-world scenario, accumulating a sufficient amount

of reference data and storing it may lead to vast memory

consumption. The scalability of the drift detection algorithm to

a high number of dimensions is desirable to keep both memory

consumption conservative and the prediction accuracy reliable.

Furthermore, rare existing approaches can detect complex

pattern drifts in multi-dimensional streams, which is important

for some downstream tasks, e.g. anomaly detection. These

complex patterns may for example include a frequency change

in data, leaving the amplitude of values observed the same.

Recently, Autoencoders have been employed in unsuper-

vised representation learning [2], and further contribute to the

downstream tasks [3], [4]. Their deep model structure enables

the modeling of complex data patterns. In time series data,

Autoencoders constructed using Recurrent Neural Networks

(RNNs) can be used to capture the temporal dependencies

between data points [5].

Our goal is to develop an unsupervised approach to detect

concept drift in high-dimensional streaming data. To achieve

our goal, we map complex high-dimensional streaming data

to and from a lower dimensional space, utilizing the Autoen-

coder’s ability to fit to a single historical pattern and failing

on newer data should its pattern change. Contributions of this

paper can be summarized as follows:

• We propose a reconstruction-based unsupervised concept

drift detection approach;

• Empirical study on synthetic data showing effectiveness

and efficiency of our approach.

II. RELATED WORK

The drift detection problem is well studied in the big data

field. The Drift Detection Method DDM [6] is one of the

most well-known concept drift detection methods. It tracks

the error rate of a base learner over the flow of data. The

learner’s error rate will decrease as the number of analyzed

815

2022 IEEE International Conference on Data Mining Workshops (ICDMW)

2375-9259/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDMW58026.2022.00109

samples increases, as long as the data distribution is stationary.

If the error rate increases, reaching the confidence interval of

a significant change, a concept drift is detected. Numerous

improvements of the algorithm [7]–[9] have been proposed,

with the idea of detecting change using base learner’s errors,

e.g. classifier’s misclassification rate, staying the same.

Algorithms for unsupervised drift detection use a distance

function or metric to quantify the dissimilarity between the

distribution of historical data and the new data. By addressing

the root sources of the concept drift, these algorithms provide

information about the drift time and location.

The first approach [10] in this category of algorithms

utilized total variation for the distribution discrepancy analysis.

The choice and application of the distance function formed

a general pattern for dissimilarity measurements used in the

unsupervised drift detection methods after it.

Incremental Kolmogorov-Smirnov (IKS) [11] is

a distribution-based method that checks for drift by

comparing instance—possibly distance between the empirical

distribution function of the newest data and the cumulative

distribution function of the reference data using a two-sample

Kolmogorov–Smirnov test.

Neighbor-based Density Variation Identification (NN-DVI)

[12] uses dissimilarities between clusters of data to check for

a concept change. The approach is addressing regional density

changes, which are often let out by the distribution-based drift

detectors.

A discriminative classifier [13] approach trains the model to

classify the reference data as belonging to a stationary concept.

Should a significant portion of the newest data be marked as

not part of the historical concept by the classifier, the drift is

alarmed.

Several existing works conduct dimensionality reduction

before concept drift detection. A PCA-based approach was

proposed in [14] to alarm for changes in multivariate data. Ceci

et al. [15] use both PCA and Autoencoder to detect changes

from latent space. A downside, however, is that the model itself

is relying on a user-defined threshold as its hyperparameter.

Jaworski et al. [16] use an Autoencoder to detect changes

in phishing data. Using an Autoencoder as the base model for

detecting concept drifts in streaming data is also introduced

in [17]. The model shows that the usage of the Autoencoder

is possible for both streaming and semi-stationary data by

training the Autoencoder on a sufficient amount of data from

the input, however, a user-predefined threshold is needed.

A significant shortcoming of a standard Autoencoder is

that it is not aiming to capture the temporal dependencies

of the data. Since concept drifts in streaming data may

have an underlying time-frame principle, a different type

of Autoencoder can be used to reconstruct the data. The

Long Short-Term Memory Encoder-Decoder (LSTM-ED) [17]

model reconstructs sequences of normal time-series. Originally

proposed as an anomaly detection method, it can be applied to

a concept drift task. An LSTM-based approach is introduced

by [18] to adapt to concept drift. The model operates in a

semi-supervised setting, as a concept drift is only detected

if the attached classifier misclassifies for an instance of data,

where the ground truth is required. An improvement is shown

in [19], in which the model adapts to the concept drift by

using the LSTM’s latent space for regression, classification,

and forecasting tasks. The aforementioned methods, however,

do not provide explicit drift detection. The proposed model,

on the other hand, implements a reconstruction-based unsu-

pervised drift detection mechanism. The reconstruction error

of streaming data is used to detect concept drifts in real-time.

III. PROPOSED MODEL

In this section, we introduce AECDD (Autoencoder-based

Concept Drift Detector), an unsupervised drift detection ap-

proach for multivariate streaming data. The section is split

into an overview of the general detection architecture, and a

detailed description of the training and prediction phases of

the algorithm.

A. Architecture overview

AECDD performs online unsupervised drift detection on

streaming data. The general workflow, shown in Figure 1,

is split into two parts: the training phase, where the LSTM

Autoencoder model learns its parameters to represent historical

data accurately, and the detection phase, during which the

data stream is consecutively consumed in batches and the drift

detection takes place.

Fig. 1. Overview of AECDD workflow

In the training phase, the Autoencoder is trained to recon-

struct the input data itself (I). In step (II), the model produces

reconstruction errors of a subset of historical data, used as

a reference sample to be compared against in the detection

phase.

The detection phase is done by consuming new data in

fixed-size batches. Autoencoder produces representations with

the parameters learned in the training phase of the latest data

inside a window and the reconstruction error is calculated

(III). If a dissimilarity measurement test (IV) confirms that

the underlying distribution in the newest reconstruction errors

is greater than the historical, the model alarms for a concept

drift (V).

B. Training phase

Given is a D-dimensional data stream {XD
1 , XD

2 , ..., XD
N },

where XD
i = {x1, x2, ...xD} for timestamp i.

816

An Autoencoder is a symmetric neural network consisting

of a encoder fenc and a decoder fdec. We construct the

Autoencoder with LSTMs to capture the temporal information

in streaming data. For a sequence consisting of S elements

X ∈ R
S×D, the Autoencoder reconstructs it as follows:

fenc : R
S×D → R

H

fdec : R
H → R

S×D
(1)

We assume that the training data is sampled from a stationary

distribution, such that the Autoencoder can learn unified

knowledge of one single data pattern. The Autoencoder is

trained to minimize the reconstruction error e = |X − (fdec ◦
fenc)X| during the training phase.

The LSTM Autoencoder takes historical data of

size T consisting of elements {XD
1 , ...XD

T } for

training. It is further split into overlapping sequences
{{XD

1 , ...XD
S }}, {XD

2 , ...XD
S+1}..., {XD

T−S , ...X
D
T }}. A

demonstration of the sub-batching process is depicted in

Figure 2 on an example with T = 4, S = 2. By splitting

the data in an overlapping manner we get 3 sequences for

training.

Minimizing the reconstruction error for the training set

is done by learning the parameters for the hidden states in

the encoding and decoding part of the Autoencoder. As the

next step, we get the reference reconstruction error ehist =
{eS×D

1 , eS×D
2 , ..., eS×D

(T−S+1)}.

Fig. 2. Data stream processing. Red part represents the training phase, while
the green one stands for online prediction.

C. Detection phase

Once the training phase is complete, we start pro-

cessing the data from the real-time data stream by

sliding a window of size W . It is split into se-

quences {{XD
i , ..., XD

i+S}, ..., {XD
i+W−S , ..., X

D
i+W }} in a

non-overlapping manner. In the case shown in Figure 2, the

sliding window size is set to W = 4. Contrary to the

training phase, the data split here results in 2 sequences for

reconstruction.

A reconstruction error enew = {eS×D
i , ..., eS×D

i+W/S} is

calculated using the model’s learned parameters. An increase

in reconstruction error indicates that the input data pattern

changes so that the Autoencoder fails to reconstruct it with

low error. The severity of change in reconstruction errors is

estimated by a statistical test.

We perform a one-tailed two-sample Kolmogorov–Smirnov

Test (KS-Test) [20], [21] as a non-parametric and distribution-

free statistical test. It is conducted on each of the recon-

struction error dimensions to check whether historical and

newer reconstruction errors are significantly different. As-

suming Fhist, Fnew are two empirical estimated cumulative

distribution functions from ehist and enew respectively, the

null hypothesis H0 : Fnew ≤ Fhist is rejected if:

sup
e

[Fnew(e)− Fhist(e)] > c(α)

√
m+ n

m · n (2)

where n, m are the number of data points in ehist and enew
with n = T and m = W ; α is the significance level, c(α) =√−ln (α). We alarm for concept drift if the null hypothesis

is rejected in at least one of the dimensions.

IV. EXPERIMENTS

A. Datasets

We evaluate our approach with two synthetic datasets con-

taining different types of concept drifts.

• Changing Sine Sudden (CSsud) - D continuous sine

waves with phase lengths {λ1, ...λD} are generated over

a duration C. Sudden concept drift is introduced where

the phase lengths switch to {λ′
1, ..., λ

′
D}. Parameter C

represents the length of a single concept.

• Changing Sine Incremental (CSincr) - instead of switch-

ing immediately, a transition period of length tr is

used, during which phase lengths gradually shift from

{λ1, ...λD} to {λ′
1, ..., λ

′
D}, introducing an incremental

drift.

The datasets are designed to generate drifts in the data distribu-

tion using frequency changes instead of amplitude changes. It

is done to emphasize the effectiveness of LSTM Autoencoder

in capturing temporal dependencies of the data stream.

A noise factor of ε = 0.1 is applied to the sine waves, which

is a random value in the range [0, 0.1]. ε is added to each of

the sine waves’ observations. Extending both datasets, a single

irrelevant dimension consisting of random values in the range

[−1, 1] is added to sophisticate the task of the fitting process.

B. Experiment setting

We examine different variations of the parameter set-

ting. The test parameters for phase length were chosen as

{λ1, ..., λD} = {100, 150, 200, 250, 300} and {λ′
1, ..., λ

′
D} =

{150, 100, 100, 250, 300} to represent concept drift in three

of the five dimensions (six including the irrelevant). The

corresponding change in wave frequencies ranges between

33% and 100%, including an increase as well as a decrease in

wave frequency. Single concept length C is set to 5000 and

transition length tr to 500.

For the KS Test we compare the experiments under three

different significance levels α = {0.001, 0.01, 0.05}. This

setting is responsible for the sensitivity of the detection model

and we examine its influence in the next section.

817

Furthermore, we try different settings of hidden size and

sequence length for the Autoencoder with H = {10 − 100}
and sequence length S = {10, 20, 50, 100, 150, 200}.

For every experiment, we first generate the data stream and

then take T observations as our historical data. The Autoen-

coder is trained to minimize the reconstruction error on 75% of

the historical data and the reconstruction error for the remain-

ing 25% of the dataset is used as a reference reconstruction

error. Once the training is complete, the data is taken in batches

of size W , and the detection task is done on the observations

inside the window. We examine the historical data size used

during training phase as T = {500, 1000, 1500, 2000} and the

window length W = {50, 100, 150, 200, 250}.

All experiments are conducted on an NVIDIA Quadro RTX

6000 24GB GPU. For the model training, we set the learning

rate as 1e − 3, batch size as 20, and the number of epochs

being 50. The experimental results are averaged over ten runs.

C. Competitors

To compare the effectiveness of the proposed model with

other unsupervised detection techniques, we chose three algo-

rithms as our competitors.

D3 [13] is a drift detection algorithm based on a discrimi-

native classifier. It operates as follows: having a reference and

the newest data sample a simple slack variable is introduced,

namely the reference data is assigned label 0, and the newest

data 1. The classifier is trained on the reference sample,

learning the historical concept. A drift is alarmed if the AUC

score for the predicted labels is higher than threshold τ ,

meaning the classifier can successfully differentiate between

the new and the data distributions. For our experiments, we

set the reference data to be the first 1000 elements of the

respective dataset, and slide a window of size 250 through the

data to test for the drift. The τ is set to the proposed default

value of 0.75.

HDDDM [22], Hellinger Distance Drift Detection Method,

functions by constructing histograms from the reference dis-

tribution and current data distribution and calculating the

Hellinger distance between them to detect concept drift. We

fix the reference data to the first 1000 elements of the dataset

and use a sliding window of size 100 to check for drift. The

p-value of the statistical test is set to 0.01.

CDBD [23], the Confidence Distribution Batch Detec-

tion method, operates similarly to HDDDM, however, the

Kullback-Leibler divergence is used as a dissimilarity mea-

surement. First 1000 elements of the dataset are set as a

reference, and we slide a window of size 100 to detect drift.

The p-value of the statistical test is set to 0.01.

To keep the comparison fair from the proposed model’s

perspective, the AECDD settings were chosen similarly to

the other competitors. We fix the training size T = 1000
and window length to W = 100. Other settings are chosen

as follows: hidden size H = 10, sequence length S = 20,

and significance level α = 0.001. These optimal settings were

obtained from the proposed model’s tests and discussed in

Section IV-E.

D. Evaluation metrics

We use the holdout evaluation approach for our experiment

[24]. The drift locations are predefined by the parameters

assigned to the synthetic data generator. The data is processed

in batches and the detection can occur only at intervals of

length W . As such, we propose to evaluate the performance by

marking all of the observations inside a window, considered to

be a part of the initial concept, as negative. Should the model

detect a drift after processing a window, the elements of this

window are marked positive. Using this methodology, a 2× 2
confusion matrix is built by comparing the prediction vector

to the ground truth about the drifted and stationary values

provided by the stream generator.

We use F1 score and accuracy as our metrics, derived from

the confusion matrix. In case of a sub-optimal fit, the model

is prone to marking the elements as belonging to another

concept. To give an insight into this type of scenario, the

precision value is taken into the final metrics.

E. Performance analysis

The best performance was achieved with a combination of

parameters H = 10, α = 0.001, T = 2000, S = 20. However,

no single best option for different drift types and window

lengths W was discovered, as shown in Table I.

To further interpret the effect of parameters, we investigate

all metrics for different settings of T , α, and H . Analyzing the

performance of the proposed model on different training sizes

in Table II, we come to a conclusion, that the effectiveness of

the model increases with the training size T . For the generated

sine data with a maximal wavelength of 300, a training size of

500 is not sufficient, nor is 1000. The more recurring patterns

the model learns during its training phase, e.g. sine phases, the

better it becomes at dissecting contextual information from the

stream, wave frequency in this example.

The significance level α setting for the KS Test is responsi-

ble for the sensitivity of the model. Based on the results shown

in Table III, we can derive that the increase of sensitivity leads

to a higher false positive rate, decreasing the performance

overall. Thus, the lowest value of α = 0.001 brings the best

results.

As a next step, we fix our values T = 2000, α = 0.001 for

an analysis on the choice of sequence length S and hidden

size H .

To better understand how the model differentiates between

concepts, we investigate the reconstruction errors for one of

the relevant dimensions in Figure 3. The real concept drift is

located at the mark 5000 for both datasets. The reconstruction

errors rise significantly after this point, which leads to the

newest data being marked as drifted. On the other hand, we can

observe false positive predictions for the concept drift before

it occurred. This could be explained by the fact that we test

each of the dimensions individually, alarming for drift if any of

them shows a difference from the historical data. Notably, the

reconstruction errors for the CSincr grow gradually in contrast

to a sudden rise for CSsud, meaning the reconstruction errors

depict the change in the data correctly. On the other hand,

818

TABLE I
BEST PERFORMANCE

Dataset Window length (W) Accuracy F1 Precision

CSsud 50 0.987 (+/-0.010) 0.99 (+/-0.008) 1.000 (+/-0.000)

100 0.980 (+/-0.008) 0.984 (+/-0.006) 1.000 (+/-0.000)

150 0.979 (+/-0.021) 0.984 (+/-0.016) 1.000 (+/-0.000)

200 0.982 (+/-0.020) 0.986 (+/-0.015) 1.000 (+/-0.000)

250 0.991 (+/-0.014) 0.993 (+/-0.011) 1.000 (+/-0.000)

CSincr 50 0.976 (+/-0.010) 0.981 (+/-0.008) 0.984 (+/-0.007)

100 0.978 (+/-0.015) 0.983 (+/-0.011) 0.984 (+/-0.005)

150 0.980 (+/-0.017) 0.985 (+/-0.013) 0.992 (+/-0.013)

200 0.976 (+/-0.024) 0.982 (+/-0.018) 1.000 (+/-0.000)

250 0.976 (+/-0.026) 0.983 (+/-0.019) 1.000 (+/-0.000)

TABLE II
PERFORMANCE UNDER DIFFERENT TRAINING SIZE

Dataset Training size (T) Accuracy F1 Precision

CSsud 500 0.535 (+/-0.016) 0.693 (+/-0.008) 1.000 (+/-0.000)

1000 0.586 (+/-0.041) 0.729 (+/-0.020) 1.000 (+/-0.001)

1500 0.670 (+/-0.101) 0.784 (+/-0.057) 1.000 (+/-0.001)

2000 0.761 (+/-0.142) 0.847 (+/-0.085) 1.000 (+/-0.001)

CSincr 500 0.555 (+/-0.011) 0.711 (+/-0.005) 1.000 (+/-0.000)

1000 0.600 (+/-0.038) 0.743 (+/-0.019) 1.000 (+/-0.002)

1500 0.667 (+/-0.090) 0.789 (+/-0.050) 0.999 (+/-0.005)

2000 0.733 (+/-0.123) 0.834 (+/-0.072) 0.999 (+/-0.004)

TABLE III
PERFORMANCE UNDER DIFFERENT SIGNIFICANCE LEVEL

Dataset Significance level (α) Accuracy F1 Precision FPR

CSsud 0.001 0.671 (+/-0.150) 0.783 (+/-0.095) 1.000 (+/-0.001) 0.589 (+/-0.282)

0.01 0.640 (+/-0.122) 0.764 (+/-0.076) 1.000 (+/-0.000) 0.642 (+/-0.239)

0.05 0.604 (+/-0.081) 0.744 (+/-0.051) 1.000 (+/-0.000) 0.702 (+/-0.175)

CSincr 0.001 0.659 (+/-0.126) 0.781 (+/-0.078) 0.999 (+/-0.005) 0.581 (+/-0.231)

0.01 0.639 (+/-0.104) 0.770 (+/-0.064) 1.000 (+/-0.003) 0.614 (+/-0.196)

0.05 0.617 (+/-0.070) 0.757 (+/-0.045) 1.000 (+/-0.001) 0.651 (+/-0.148)

TABLE IV
MODEL PERFORMANCE COMPARISON

Dataset Detector Accuracy F1 Precision

CSsud CDBD 0.519 (+/-0.047) 0.513 (+/-0.032) 0.524 (+/-0.050)

D3 0.500 (+/-0.004) 0.043 (+/-0.164) 0.501 (+/-0.007)

HDDDM 0.668 (+/-0.166) 0.526 (+/-0.316) 0.681 (+/-0.338)

AECDD 0.704 (+/-0.024) 0.790 (+/-0.014) 1.000 (+/-0.000)
CSincr CDBD 0.513 (+/-0.042) 0.518 (+/-0.029) 0.541 (+/-0.046)

D3 0.476 (+/-0.000) 0.000 (+/-0.000) -

HDDDM 0.641 (+/-0.202) 0.480 (+/-0.355) 0.733 (+/-0.277)

AECDD 0.708 (+/-0.017) 0.798 (+/-0.009) 0.996 (+/-0.007)

when looking at a dimension not affected by the concept

drift in Figure 4, we can not observe a significant change in

its reconstruction errors at the drift location. Still, a concept

drift is detected from a statistical test conducted on other

dimensions.

As demonstrated in Figures 5 and 6, an increase of both

hidden size and sequence length leads to worse results for

most of the parameter settings. A possible reason could lie in

that the model with a smaller latent space captures contextual

information better than one with over-complicated hidden state

transitions. As for the sequence lengths, as its size increases,

it captures a larger part of one particular sine wave. Having

the Autoencoder focused on reconstructing a smaller portion

of the waves may be a better solution than trying to recreate

the phase as a whole.

Comparing the model to other unsupervised detection meth-

819

Fig. 3. Reconstruction errors in relevant dimension before and after concept drifts: the two concepts in each dataset is split by the green dashed line. The
colors represent the model’s prediction of concepts.

Fig. 4. Reconstruction errors in an irrelevant dimension before and after concept drifts: the two concepts in each dataset is split by the green dashed line.
The colors represent the model’s prediction of concepts.

ods in Table IV, we can see that the proposed model achieves

better results even when operating with a non-optimal training

size. The discriminative classifier approach in D3 fails to raise

an alarm when the sine wave frequency changes since the

observed values’ range stays the same. The Kullback-Leibler

divergence does not prove to be a good metric for the data

distribution change either. AECDD achieves almost perfect

precision score when compared to other algorithms, since the

underlying Autoencoder model captures the change of data

even when not fitted optimally to the reference data. Overall,

using reconstruction errors instead of the raw observed values

decreases the variance of data used for the dissimilarity tests,

bringing a benefit to the detection accuracy.

Fig. 5. Parameter sensitivity analysis: Sequence length.

In a real-world scenario, of course, the data is not bound to

having only two concepts throughout the whole data stream.

The next step is after a concept drift has been detected in the

model adaptation. Several drift adaptation strategies have been

proposed in the literature, the obvious being discarding the old

model and training a new one on the latest data [25], [26]. Xu

et al. [27] proposed to adapt to the concept drift by increasing

the number of nodes in the hidden layers of their model to

Fig. 6. Parameter sensitivity analysis: Hidden size.

Fig. 7. Running time analysis.

increase the generalization capability. The model adaptation

strategy, however, is out of our work’s discussion scope as we

only propose a way to detect the drift.

Finally, the processing time is an important factor in real-

time applications. We track the computation time in our

experiments. Figure 7 demonstrates the relation of time spent

in the training phase of the algorithm, with training size T
being the most important factor. Increasing training size T
to boost the model’s accuracy is seen as a trade-off between

computation time and model performance.

The window processing time, however, takes up only a tiny

820

fraction of the model’s training time for one epoch. Since

we split the window into sequences in a non-overlapping

manner, the number of sequences to be passed through LSTM

is significantly lower than for one iteration of training.
An interesting finding that we discovered, is that the in-

crease of sequence length first drastically decreases window

processing time, only to increase it as the sequences become

larger. A possible reason would be that the time taken by

reconstructing a single sequence increases at a lower speed

than the number of sequences that are contained in the window,

which all need to be passed through the Autoencoder.

V. CONCLUSION AND FUTURE WORKS

This paper introduces an Autoencoder-based unsupervised

drift detection algorithm for multivariate streaming data. The

AECDD has been tested on synthetic data, tailored to specif-

ically target the ability of the model to capture contextual

information. The proposed model has shown good results in

this setting. The application of the proposed algorithm to real-

world data should include a viable strategy for the model’s

adaptation process once the drift has been detected since

the real-world scenarios are not limited to having only two

concepts throughout the whole data stream.
In our work, we assume that the historical data originates

from a stationary context where no concept drift occurs. On

the other hand, an insufficient amount of data taken for training

leads to a bad performance of the model. This possible trade-

off between the danger of potentially encountering a concept

drift inside the historical data and achieving good results on

new data is a subject of future research. Specifically, the

behavior of the algorithm on real-world data and tuning the

hyperparameters is a field of interest for future work.

ACKNOWLEDGMENT

This work was supported by the Research Center Trustwor-

thy Data Science and Security, an institution of the University

Alliance Ruhr.

REFERENCES

[1] S. Rabanser, S. Günnemann, and Z. Lipton, “Failing loudly: An empir-
ical study of methods for detecting dataset shift,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[2] G. Zhou, K. Sohn, and H. Lee, “Online incremental feature learning
with denoising autoencoders,” in Artificial intelligence and statistics.
PMLR, 2012, pp. 1453–1461.

[3] P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff, “Timenet: Pre-
trained deep recurrent neural network for time series classification,”
arXiv preprint arXiv:1706.08838, 2017.

[4] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014
2nd workshop on machine learning for sensory data analysis, 2014, pp.
4–11.

[5] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-
tection,” 07 2016.

[6] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in In SBIA Brazilian Symposium on Artificial Intelligence.
Springer Verlag, 2004, pp. 286–295.

[7] I. Frı́as-Blanco, J. d. Campo-Ávila, G. Ramos-Jiménez, R. Morales-
Bueno, A. Ortiz-Dı́az, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on hoeffding’s bounds,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp.
810–823, 2015.

[8] A. Pesaranghader and H. Viktor, “Fast hoeffding drift detection method
for evolving data streams,” vol. 9852, 09 2016, pp. 96–111.

[9] A. Pesaranghader, H. Viktor, and E. Paquet, “Mcdiarmid drift detection
methods for evolving data streams,” 2018.

[10] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” 04 2004, pp. 180–191.

[11] D. M. dos Reis, P. Flach, S. Matwin, and G. Batista, “Fast unsupervised
online drift detection using incremental kolmogorov-smirnov test,” in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1545–1554.
[Online]. Available: https://doi.org/10.1145/2939672.2939836

[12] A. Liu, J. Lu, F. Liu, and G. Zhang, “Accumulating regional density
dissimilarity for concept drift detection in data streams,” Pattern Recog-
nition, vol. 76, 11 2017.

[13] O. Gözüaçık, A. Büyükçakır, H. Bonab, and F. Can,
“Unsupervised concept drift detection with a discriminative
classifier,” ser. CIKM ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 2365–2368. [Online]. Available:
https://doi.org/10.1145/3357384.3358144

[14] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, “A pca-based
change detection framework for multidimensional data streams: Change
detection in multidimensional data streams,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2015, pp. 935–944.

[15] M. Ceci, R. Corizzo, N. Japkowicz, P. Mignone, and G. Pio, “Echad:
Embedding-based change detection from multivariate time series in
smart grids,” IEEE Access, vol. PP, pp. 1–1, 08 2020.

[16] M. Jaworski, L. Rutkowski, and P. Angelov, “Concept drift detection
using autoencoders in data streams processing,” in Artificial Intelli-
gence and Soft Computing, L. Rutkowski, R. Scherer, M. Korytkowski,
W. Pedrycz, R. Tadeusiewicz, and J. M. Zurada, Eds. Cham: Springer
International Publishing, 2020, pp. 124–133.

[17] A. G. Menon and G. Gressel, “Concept drift detection in phishing using
autoencoders,” in Machine Learning and Metaheuristics Algorithms,
and Applications, S. M. Thampi, S. Piramuthu, K.-C. Li, S. Berretti,
M. Wozniak, and D. Singh, Eds. Singapore: Springer Singapore, 2021,
pp. 208–220.

[18] Á. C. Lemos Neto, R. A. Coelho, and C. L. d. Castro, “An incremental
learning approach using long short-term memory neural networks,”
Journal of Control, Automation and Electrical Systems, Apr 2022.
[Online]. Available: https://doi.org/10.1007/s40313-021-00882-y

[19] S. Suryawanshi, A. Goswami, P. Patil, and V. Mishra, “Adaptive
windowing based recurrent neural network for drift adaption
in non-stationary environment,” Journal of Ambient Intelligence
and Humanized Computing, Jun 2022. [Online]. Available:
https://doi.org/10.1007/s12652-022-04116-0

[20] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An
information-theoretic approach to detecting changes in multidimensional
data streams,” Interfaces, 01 2006.

[21] C. Chen, Y. Wang, J. Zhang, Y. Xiang, W. Zhou, and G. Min, “Statis-
tical features-based real-time detection of drifted twitter spam,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 4, pp.
914–925, 2017.

[22] G. Ditzler and R. Polikar, “Hellinger distance based drift detection for
nonstationary environments,” in 2011 IEEE Symposium on Computa-
tional Intelligence in Dynamic and Uncertain Environments (CIDUE),
2011, pp. 41–48.

[23] P. Lindstrom, B. Mac Namee, and S. Delany, “Drift detection using
uncertainty distribution divergence,” vol. 4, 12 2011, pp. 604–608.

[24] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.

[25] S. H. Bach and M. A. Maloof, “Paired learners for concept drift,” in
2008 Eighth IEEE International Conference on Data Mining, 2008, pp.
23–32.

[26] A. Bifet and R. Gavaldà, “Learning from time-changing data with
adaptive windowing,” vol. 7, 04 2007.

[27] S. Xu and J. Wang, “Dynamic extreme learning machine for data stream
classification,” Neurocomputing, vol. 238, 02 2017.

821

