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Abstract—Ensembles are one of the most promising research
directions for unsupervised anomaly detection. But combining
many different models into such an ensemble requires good
combination procedures that are able to combine the strengths of
many different submodels. To find, evaluate and understand these
procedures, we create the biggest experiment to date, including
multiple orders of magnitude more ensembles than each of our
competitors.

Using this high number of comparisons, we also study the
effect different normalization methods have on the combination
procedure and extract conditional performances of individual
models. We use this, to develop a simple set of best practices to
create good and reliable anomaly detection ensembles.

Index Terms—anomaly detection, ensembles, unsupervised ma-
chine learning

I. INTRODUCTION

Anomaly detection, defined as finding strange or unusual
samples, has long been an important data analysis task with
many applications, ranging from fraud detection to healthcare
[1]–[3].

More recently, unsupervised anomaly detection has become
its most interesting subfield. There we want to find abnormal
samples without knowledge about any examples of how they
might look like. This allows applying anomaly detection to
applications where labeling recorded samples is costly, where
unknown types of anomalies might appear, or where anomalies
have not been recorded. And since anomalies are by definition
rare, studying and improving unsupervised anomaly detection
is required for applying machine learning to many more
datasets.

But this also complicates the task, as we can not assume
much about the anomalies we want to find. We effectively have
to learn how to detect almost every type of anomaly, compared
to separating two sets of limited size in the supervised case.

Still many algorithms exist which try to find outliers by
employing a plentitude of various approaches. Some algo-
rithms try to model the distribution of known data samples [4],
[5], other methods isolate anomalies [6], [7] and even other
methods use statistical properties to indicate anomalousness
[8], [9].

For each method, there are anomalies, that are easy to find.
And thus there tends to be an optimal algorithm for a given

anomaly detection task, dataset, and the associated type of
anomalies.
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Fig. 1. Regions shown which are considered normal by two algorithms,
OCSVM and HBOS, as well as of an ensemble of both. This ensemble
considers the average score of both models and can create a more accurate
representation of the underlying distribution: While HBOS fails to capture the
distribution at point A and clearly makes a mistake at point B, it also captures
the vertical parts of the distribution much better (see point C). The ensemble
handles points A and B right and captures the distribution at C better than
the OCSVM. Still, the combination is not perfect; finding the right function
to build an ensemble is a complicated task.

This is a problem, as evaluating which method works best,
is a supervised task and thus requires knowledge about the
anomalies we want to find. As this is by definition not given
for unsupervised anomaly detection, and so choosing the best
anomaly detection algorithm is usually impossible.

Instead, applications rely on generalized results. But recent
surveys struggle to find algorithms that are significantly dif-
ferent than others [10].

Ensembles can provide a solution to this. While for super-
vised anomaly detection, ensembling techniques allow com-
bining many methods into a better one, for unsupervised tasks
this is not guaranteed and their main use is to assure that
a reasonable performance to each type of anomaly [11] is
achieved. This is because of the unsupervised nature of our
task. We are not able to test how well an individual method
works, and so, when we are given many models, we are not
able to weigh their influences based on their performance.
Instead unsupervised ensembles have to rely on statistical
effects: When one model mistakenly considers a sample as



too anomalous, it is less likely that all models make the same
mistake, and so the error gets averaged out, increasing the
reliability of our detection.

Unsupervised ensembles can be separated into homoge-
neous and heterogeneous ensembles [12]. Homogeneous en-
sembles [6], [13], [14] use very similar individual models,
resulting in easily combinable submodels, but limiting how
different individual models can be, and thus how much they
can benefit from ensembling. Heterogeneous ensembles, like
those we study in this paper, use different known models
instead and profit from the high number of anomaly detection
concepts suggested by the literature. But combining highly
different methods also makes normalizing and aggregating
their results quite challenging.

Regarding this limitation, many functions that combine the
outputs of different anomaly detection algorithms have been
proposed. Simple approaches like the average of their outputs
can be effective, but recently also more advanced ideas, for
example based on psychology [15], have been suggested.

Still, an strong unbiased comparison of these methods is
missing. To help with this, we create the biggest known
comparison to date, evaluating more than 6 billion ensembles,
which to the best of our knowledge is multiple orders of
magnitude more than every other paper before.

We are also the first to study the effect different normal-
ization functions have on the resulting combination and we
use the high number of ensembles we study, to also extract
information about the best submodels to use.

By doing so, we provide a complete guide for creating
effective unsupervised anomaly detection ensembles.

II. RELATED WORK

A. Anomaly Detection

Anomaly detection, the task of finding abnormal or strange
samples, has no singular perfect solution. Instead, whenever
any method behaves unusually, it can be seen as a sign of
an anomaly and thus be extracted into an anomaly detection
algorithm. This means that there are many different methods
following many different approaches to finding anomalies.
And because each one finds slightly different types of anoma-
lies, it is hard to say if one algorithm is more effective than
another [10], [16].

The existing methods can be broadly separated into those
that use deep learning and those that don’t. Shallow algorithms
include those based on the distance to close samples, like kNN
[17] and lof [18] or those modeling densities like a kde [5].
Other solutions include an isolation forest [6], which tries to
separate isolated points, or Abod exploiting angular differences
caused by separations. Deep learning allows learning more
complicated relations, for example, to model densities through
a GAN [4], to learn a better data representation through
DeepSVDD [19] or to enable reconstruction-based algorithms,
like an autoencoder [20].

For our comparison we want to use as many algorithms as
possible, so in addition to those already mentioned, we also
employ an ocsvm [21], a variational autoencoder [22], a pca

[23] algorithm and train Inne [7], Sod [24], HBos [25], Cblof
[26], Loda [27], COF [28], Copod [9], Ecod [29], Lmdd [30]
algorithms.

B. Ensembles

The high number of different approaches to anomaly detec-
tion invites their combination into ensembles. In the best case,
combining many different models can allow to average out
errors, while aggregating different knowledge from multiple
sources.

For supervised machine learning, this has long proven
useful. Methods like bagging, boosting and stacking [31]
are effective at using supervised evaluations to create more
efficient algorithms.

But for unsupervised tasks, we are not able to test if a model
is performing better or worse than another during training. This
makes creating ensembles much harder, and certain methods,
like for example boosting, almost impossible.

Combining many models is still useful, as long as errors
are rare and we can benefit from many different approaches
[12], [13]. This means common errors are even more rare, and
thus mistakes of individual models cancel out. But compared
to the supervised task, we no longer have any guarantee that
our ensemble performs better than individual models, as we
can not evaluate a combination of models directly. But since
we could also not simply choose the best individual model, we
consider an ensemble effective if it outperforms the average
performance of its submodels: The average performance with
an ensemble has to be higher than the average performance
without it.

Achieving this invites creating advanced combination func-
tions, to be able to extract the most amount of information
from individual models. But this is a complicated task, es-
pecially for heterogenous ensembles, as individual models
produce drastically differently distributed anomaly scores. We
will briefly explain common approaches in Section III, before
comparing them in the rest of this paper.

C. Comparisons

Other papers compare different combination functions for
unsupervised anomaly detection.

Each of the papers that introduce the combination functions
of the next Section also compares them to other methods [12],
[15], [32]. Still, their results tend to contradict each other,
limiting the trust we can have in their conclusions. Also, their
evaluation is often limited to a low number of ensembles, fur-
ther limiting how well we can rely on these comparisons. One
exception to this is the paper introducing the IRT combination
function [15], which evaluates combination functions on 10000
different ensembles and inspired our evaluation. Still even
compared to this high number of ensembles, we are creating
10000 times more ensembles, while using more datasets and
individual submodels.

Another notable evaluation is given by [11], which com-
pares different methods in an unbiased way, but their limited
evaluation makes this paper also less useful in our opinion.



To the best of our knowledge, we are also the first to system-
atically study the effect of different normalization functions,
and the benefit choosing different submodels provides.

III. COMBINATION FUNCTIONS

In this Section, we will briefly review different ensemble
combination methods.

A. Simple functions

Reference [12] suggests using the average of model predic-
tion, or the maximum model prediction. Reference [13] uses
a median of the model predictions, while Reference [14] uses
a quadratic mean.

In addition to these, we also test the minimum model
prediction (ens(x) = mini(modeli(x)) and both a cubic and
quartic mean (ens(x)a = meani(modeli(x)

a), a = 3, 4).
Additionally, [12] also suggests combining average and

maximum model prediction into an average of maxima (AoM)
or maximum of average (MoA). But using those requires
choosing many additional options: Which combination to use
and which submodel to assign to which of how many groups.
Because of this, we leave these functions for a dedicated study.

B. Stacking

The three most common ensembling methods for supervised
tasks are bagging, boosting and stacking [31]. In the unsuper-
vised setting, we mostly look at bagging, as it is much easier
to do compared to boosting [12]. But we do not see a reason
prohibiting stacking: We can understand the individual models
as learning a feature representation space in which outliers are
more easily visible. And on this representation, we can train
another anomaly detection algorithm.

Still stacking has not been studied well in the literature,
except for supervised anomaly detection [33].

To understand why there is still not much research into
stacking, we test a few common anomaly detection methods
as combination functions. For this, we train our stacking
model on 20% of our normal training data. We refer to this
dataset as our normalization samples, as we will also use the
same samples to calculate normalization constants in the next
section. We train 5 different kNN [17] models with various
values of k (1,3,5,10,100), and an isolation forest [6]. We also
use the (the inverse) probability density function obtained by
modeling the distribution as a single multi-variate gaussian
distribution.

C. Combination through clustering

Similar to the stacking approach, here we try to model
the resulting anomaly detection representation space. But
instead of training an anomaly detection algorithm, we cluster
these points. This means when we have multiple groups of
anomalies (one algorithm only finds one kind of anomaly,
while another one only finds a different kind of anomaly),
we assume that points in the center of each of these clusters
are normal, while points with a high distance to them are not.
To evaluate this, we use Affinity propagation [34] to calculate

the clusters. For computational reasons, we restrict ourselves
to using Zscore normalization.

D. Threshold combinations

A threshold combination of submodels [12] is defined
as ensthresh(x) = meani(relu(modeli(x) − t) + t) (with
relu(x) = 1

2 · (x + ∥x∥)). So high anomaly scores are not
changed, while low anomaly scores are cut off and brought to
a constant level. Anomaly detection usually only cares about
high ranges of scores, which represent anomalies. This means
that the combination can be perturbed by small fluctuations
in how normal a sample is considered, which can be fixed
by threshold ensembles. We implement this here only with
the original normalization of Z-score, as this allows us to
understand the Threshold value t as Z scores by assuming
the distribution of anomaly scores to be Gaussian. We test
here 5 different values for t = −2,−1, 0, 1, 2.

E. Greedy ensembles

A greedy ensemble [32] is very similar to an approach
like boosting for unsupervised anomaly detection. This would
usually not be possible without true labels, so the approach
here is to construct an approximative label vector from the
submodels themself. This works, as we can be reasonably sure
that the most abnormal samples (we assume here 5) found by
each algorithm are true anomalies. Using this vector, we can
try to average only a subset of models. We choose those that
maximize a weighted correlation to our constructed vector in
a greedy manner. We restrict ourselves to a 01 normalization
for computational reasons.

F. Item response theory

Finally, Reference [15] suggests using IRT, a method
commonly used in psychology to extract hidden variables,
by treating an optimal anomaly score as hidden truth. To
understand this further, please take a look at their excellent
original paper.

IV. NORMALIZATION FUNCTIONS

We compare 5 different common normalization methods.
For each of these methods, we use a subset of our training
samples containing 20% of the points to calculate the individ-
ual normalization constants. When we demand all our samples
to be in the range [0,1], all of our normalization samples are
in this range, but for our training and test samples this is not
guaranteed. Still most (normal) samples are in this range.

We think this approach matches the task of unsupervised
anomaly detection best. When we require our model to work
best on new data, we can not guarantee them to be in the same
range, and we don’t want to remove information.

The only exception is the IRT ensemble because their
calculation requires every score to be between 0 and 1. Here
we normalize our samples on the full dataset.



A. 01 normalization

By applying 01 normalization, we demand each model
output to be between 0 and 1.

x01
i =

xi −minj(xj)

maxj(xj)−minj(xj)
(1)

B. Zscore normalization

When applying Zscore normalization, we want to fix the
mean and the standard deviation of each model’s output to be
0 and 1.

xZ
i =

xi −meanj(xj)

stdj(xj)
(2)

C. Simple normalization

Using no normalization would make little sense for most
models, as their scale is often quite different. Instead, we
simply divide each value by the mean of all predictions. We
use this normalization mostly to test how important careful
normalization is.

xsimple
i =

xi

meanj(xj)
(3)

D. Clipped normalization

Finally, we suggest an extension to Zscore normalization,
in which values are limited to a given absolute value c.

xclipped
i = min(max(xZ ,−c), c) (4)

This means that the influence of a single model is limited, as
it can no longer have an arbitrarily high contribution. We test
this normalization once with c = 1 and with c = 2. Assuming
a Gaussian distribution, this should alter ≈ 32% and ≈ 4.6%
of samples respectively.

V. EXPERIMENTS

A. Experimental setup

We design our experiments so that we can consider the
highest number of ensembles available, by covering as many
datasets and submodels as possible.

On every of the 182 datasets currently contained in the yano
library [35], we apply each of the 21 models described in
section II-A. All models are trained using the pyod library [36]
with their originally suggested hyperparameters. Using these
results, we take a look at every possible combination of models
to build our ensembles. We only consider ensembles that con-
tain at least 5 submodels. Some models are also incompatible
with some datasets, producing faulty or erroneous results; we
simply ignore those combinations and build ensembles from
the remaining submodels.

In total, we look at 124.053.401 different ensemble-building
tasks. We apply every of our 50 different pairs of combination
(Section III) and normalization functions (Section IV) to each
of them. This means, in total we look at more than 6 billion
different ensembles to produce our conclusions.

B. Evaluating ensembles

A single anomaly detector is usually evaluated using a ROC-
AUC score [37]. It is defined as the probability of random
anomaly samples being assigned a higher anomaly score than
a random normal one.

If we want to extend this to comparison ensembles, we can
look at its rank-1 accuracy [15]: In how many cases does a
given ensemble produce the highest possible AUC score?

But we think this is not the best choice, as this ignores the
magnitude of change and introduces an unrealistic scenario.
Most of the time, we only care that an ensemble reliably
performs well and not that no other ensemble performs slightly
better. And as the stated rank-1 accuracy depends on the num-
ber of combination functions we consider, which complicates
parallelizing our calculations, we evaluate our combination
functions differently.

For this, we propose 10 simple metrics, which not only
allow us to find the best combination method, but also to learn
more about how ensembles work for unsupervised tasks.

The first metric that we want to consider, is the relia-
bility of the ensemble. How often is using an ensemble a
good choice, compared to a random model(AUC(ens(x)) ≥
meani(AUC(modeli(x)))). And similarly, we also state the
probability that the ensemble improves on the best and the
worst individual model it is built from (metric 2-4).

But reliability alone is not enough. We also care about the
size of the improvement. For this, we can directly look at
the average ROC-AUC score (metric 1). But this value stays
fairly constant around 0.75, as we have some datasets on
which models commonly reach a good AUC score of ≈ 1.0
and some datasets where they only reach a low score ≈ 0.5.
Because of this, it is hard to interpret any differences. So, we
additionally also use the same comparisons as before and give
the average difference in ROC-AUC between the ensemble
and the worst/average/best submodel (metric 5-7).

Still, this weights badly-performing models differently from
well-performing models. This is because improving an AUC
score from 0.8 to 0.9 compared to 0.98 to 0.99, has a much
bigger effect. Even though, in both cases, the probability that
a random normal sample is considered more anomalous is
halved. Because of this, we define a new metric to capture
these probability changes:

∆Err = log(
1−AUC1

1−AUC2
) = log(1−AUC1)−log(1−AUC2)

(5)
Here a model halving the error rate always has a fixed
∆Err = log(2) ≈ 0.3. We also calculate this error rate com-
pared to the performance of the worst/average/best submodel
(metric 8-10).

C. Comparison of combination functions

We state these 10 metrics for each of our 50 ensemble
procedures in Table I.

We achieve the best ensembles with a simple maximum
combination function normalized with a 01 normalization.



TABLE I
ANOMALY DETECTION ENSEMBLE COMPARISON

Mean Bigger Than ∆AUC to ∆Err compared to
Methods AUC Minimum Mean Maximum Minimum Mean Maximum Minimum Mean Maximum

maximum (01) 0.766 99.837% 75.39% 4.445% 0.28 0.036 -0.081 1.741 0.955 -1.386
maximum (z) 0.758 99.248% 72.99% 3.258% 0.271 0.027 −0.09 1.601 0.814 −1.527

maximum (simple) 0.723 96.634% 64.153% 4.05% 0.237 −0.007 −0.124 1.37 0.584 −1.757
maximum (clipped 1) 0.66 91.431% 23.552% 0.282% 0.174 −0.07 −0.188 0.487 −0.299 −2.64
maximum (clipped 2) 0.712 95.002% 53.596% 0.739% 0.226 −0.018 −0.136 0.814 0.027 −2.314

mean (01) 0.754 96.794% 84.015% 2.64% 0.267 0.023 −0.094 1.599 0.813 −1.528
mean (z) 0.756 96.796% 84.857% 2.633% 0.27 0.026 −0.092 1.604 0.817 −1.524

mean (simple) 0.734 96.801% 69.156% 3.767% 0.248 0.004 −0.114 1.505 0.718 −1.623
mean (clipped 1) 0.747 96.8% 82.687% 1.308% 0.26 0.016 −0.101 1.199 0.412 −1.928
mean (clipped 2) 0.754 96.794% 85.903% 1.576% 0.267 0.023 −0.094 1.321 0.534 −1.807

median (01) 0.752 96.708% 82.115% 1.742% 0.265 0.021 −0.096 1.401 0.614 −1.727
median (z) 0.755 96.764% 84.038% 1.803% 0.268 0.024 −0.093 1.447 0.661 −1.68

median (simple) 0.744 96.659% 74.613% 2.805% 0.258 0.014 −0.104 1.381 0.595 −1.746
median (clipped 1) 0.743 96.761% 78.658% 0.475% 0.257 0.013 −0.104 1.056 0.269 −2.072
median (clipped 2) 0.753 96.759% 83.664% 1.065% 0.267 0.023 −0.095 1.295 0.509 −1.832

minimum (01) 0.673 95.942% 36.93% 0.902% 0.187 −0.057 −0.174 0.687 −0.1 −2.441
minimum (z) 0.671 96.439% 35.013% 0.682% 0.185 −0.059 −0.177 0.66 −0.126 −2.467

minimum (simple) 0.742 97.023% 71.487% 4.143% 0.255 0.011 −0.106 1.203 0.417 −1.924
minimum (clipped 1) 0.667 96.466% 29.391% 0.643% 0.181 −0.063 −0.181 0.629 −0.158 −2.499
minimum (clipped 2) 0.672 96.431% 34.76% 0.671% 0.186 −0.058 −0.175 0.66 −0.126 −2.467

l2mean (01) 0.753 97.075% 77.929% 3.079% 0.267 0.023 −0.095 1.649 0.862 −1.479
l2mean (z) 0.729 95.947% 52.75% 4.131% 0.243 −0.001 −0.119 1.311 0.524 −1.817

l2mean (simple) 0.735 97.753% 65.479% 2.892% 0.249 0.005 −0.113 1.458 0.671 −1.67
l2mean (clipped 1) 0.703 93.547% 37.37% 2.09% 0.216 −0.028 −0.145 0.803 0.016 −2.325
l2mean (clipped 2) 0.731 94.967% 53.955% 2.933% 0.244 0.0 −0.117 1.087 0.3 −2.041

l3mean (01) 0.751 97.333% 76.353% 3.242% 0.265 0.021 −0.097 1.637 0.851 −1.49
l3mean (z) 0.728 96.185% 52.526% 4.219% 0.242 −0.002 −0.12 1.314 0.528 −1.813

l3mean (simple) 0.734 97.618% 65.393% 3.095% 0.247 0.003 −0.114 1.444 0.657 −1.684
l3mean (clipped 1) 0.706 93.834% 39.472% 2.095% 0.22 −0.024 −0.142 0.827 0.04 −2.301
l3mean (clipped 2) 0.734 95.336% 56.223% 3.013% 0.247 0.003 −0.114 1.115 0.329 −2.012

l4mean (01) 0.75 97.537% 75.127% 3.361% 0.263 0.019 −0.098 1.604 0.817 −1.523
l4mean (z) 0.728 96.396% 52.426% 4.203% 0.241 −0.003 −0.12 1.316 0.53 −1.811

l4mean (simple) 0.733 97.599% 65.068% 3.15% 0.247 0.003 −0.114 1.436 0.649 −1.692
l4mean (clipped 1) 0.708 94.011% 40.809% 2.117% 0.222 −0.022 −0.14 0.844 0.058 −2.283
l4mean (clipped 2) 0.735 95.912% 57.487% 3.016% 0.249 0.005 −0.112 1.132 0.346 −1.995
Threshold (t = −1) 0.757 96.8% 85.036% 2.655% 0.271 0.027 −0.091 1.608 0.821 −1.52
Threshold (t = −2) 0.756 96.796% 84.934% 2.652% 0.27 0.026 −0.091 1.604 0.817 −1.524
Threshold (t = 0) 0.756 96.734% 81.793% 3.009% 0.27 0.026 −0.091 1.599 0.813 −1.528
Threshold (t = 1) 0.746 96.797% 70.396% 2.296% 0.26 0.016 −0.101 1.5 0.713 −1.628
Threshold (t = 2) 0.719 97.651% 47.855% 3.156% 0.233 −0.011 −0.129 1.295 0.508 −1.833

knn (k = 1) 0.757 97.326% 68.474% 4.434% 0.271 0.027 −0.091 1.543 0.757 −1.584
knn (k = 3) 0.757 97.532% 68.761% 4.434% 0.27 0.026 −0.091 1.537 0.751 −1.59
knn (k = 5) 0.756 97.664% 69.132% 4.074% 0.27 0.026 −0.092 1.523 0.736 −1.605

knn (k = 10) 0.752 97.068% 68.905% 3.22% 0.266 0.022 −0.096 1.48 0.693 −1.648
knn (k = 100) 0.664 78.755% 44.347% 3.768% 0.178 −0.066 −0.184 1.044 0.258 −2.083

IFor 0.754 97.283% 69.757% 2.502% 0.268 0.024 −0.093 1.352 0.566 −1.775
Gaussian 0.754 97.807% 66.289% 6.148% 0.268 0.024 −0.094 1.397 0.611 −1.73
Clustered 0.752 96.74% 76.265% 3.991% 0.265 0.021 −0.096 1.694 0.907 −1.434
Greedy 0.751 96.73% 83.008% 2.167% 0.264 0.02 −0.097 1.339 0.552 −1.789

IRT 0.731 96.511% 70.052% 2.624% 0.245 0.001 −0.117 1.125 0.338 −2.003

Overall simple functions perform quite well, many of them
outperforming each of the more complicated methods.

It is the case, that most ensembles contain a submodel that
performs better than the combined ensemble, showing that
heterogenous ensembles for unsupervised anomaly detection
work substantially different compared to supervised tasks.

At least ensembles outperforming an average model is fairly
likely when using a good combination function. Still, even
this is not guaranteed. There also is even a small chance, that
the ensemble performs worse than each individual model. But
using the right methods, it only happens for less than 1 out of

every 500 different ensembles, and thus can likely be safely
ignored.

From the simple methods we evaluate, the maximum seems
to be clearly the best. But interestingly this depends on the
normalization applied; when using a clipped normalization it
performs worse than every other model (by most metrics).
We think this happens because removing extreme values also
removes the reason for making the maximum efficient: Only a
single model has to consider a sample anomalous, but when ≈
16% of samples are equally as anomalous, this loses meaning.

Because of this high dependency on normalization effects,



we still only recommend a maximum combination function if
at least some anomalies are known, to make sure this ensemble
works well. Still, it can produce the best ensembles according
to 8 out of 10 different metrics.

In the truly unsupervised case, a simple mean might be
more reliable. As long as a common normalization is used,
it does not matter much which one is chosen. And removing
very extreme values, we can create the model with the highest
probability of outperforming the average performance. Still,
the average ROC-AUC performance is about 1% worse than
for the best ensemble.

Higher powers of the mean don’t seem to serve many
purposes compared to a simple mean. Also using the minimum
of all models might at most be useful for very specialized
tasks.

On the other hand, the threshold ensemble can outperform a
simple mean very slightly.But since the improvement is minor
and this ensemble also interacts with a clipped normalization,
it is probably not possible to increase it much further. The
best possible threshold seems to be t = −1, where the ≈ 16%
most normal samples are modified (assuming a Gaussian dis-
tribution), contrary to the original paper [12], which suggests
t = 0 (effecting 50% of samples).

Stacking could be quite promising. For the knn, a low value
of k is the best, performing better than each other the isolation
forest, a Gaussian fit, or even the clustering approach (in
most metrics). It is able to outperform each simple mean,
except in the likelihood of outperforming the mean case,
nor in the ∆err metrics. This implies that it performs best
in cases where the anomaly detection task is complicated.
We see these as specialized high-risk high-reward methods.
These models require the right situation (for example many
normalization samples for the knn), but then can perform
very well. And considering that we only looked at 4 simple
approaches for stacking, we think there might be even better-
dedicated algorithms for our task, and we look forward to
revisiting this with future research.

The Gaussian fit deserves special attention, as it has by far
the highest probability of outperforming every single submodel
and thus might be able to benefit from the ensemble similar
to how supervised algorithms work. Combining multiple def-
initions of anomalies and recognizing which parts of which
definition is helpful. But before this is the case, we still have
far to go, as the Gaussian fit is not very reliable, assumes a
specific distribution of our samples, and does not work well
with few data points.

Our last methods, the greedy ensemble, and the IRT ap-
proach perform well, but also not exceptionally so. And since
in most cases we can achieve better results with less work,
they don’t seem worth the extra effort.

Finally, when we look at the last columns, we can reach an
∆Err of almost 1. This means that when a random model
misclassifies a sample, on average there is only a e−0.955 ≈
38% chance that the maximum (01) ensemble also misclassifies
it. So unless in very special situations, using an ensemble is
generally a good idea.

D. Model contributions

Fig. 2. Average ROC AUC score of ensembles using a specific submodel,
compared to the average of all models considered. Here only shown for the
maximum (01) ensembles, as this produces the best ensembles, and the rest
look very similar.

Next to choosing the right combination procedure, we also
study which models create the best ensembles. For this, we
calculate the average AUC score for each ensemble consider-
ing a given model. We are no longer able to use all our ten
metrics, as most metrics would compare the combined AUC
score to the performance of individual models, which also
changes when we remove/add a given model.

In Figure 2, we show the difference in the average perfor-
mance when using all models for the maximum combination
function and 01 normalization. We only show this dependency,
as it has the best overall performance and the other ensemble
methods show similar relations.

Abod seems to be by far the most helpful method to
include in an ensemble. We think this is happening because its
approach of considering angles is fairly unique, and so many
models can profit from the new concept it provides. Overall,
Abod should not be neglected in any ensemble, as its inclusion
alone affects the resulting ensemble as much as choosing a
slightly better ensemble procedure.

Other algorithms seem to actively hurt the ensemble per-
formance. We do not suggest adding the lmdd algorithm to
any ensemble, and would also suggest not employing copod
or ecod except in special situations.

Interestingly, algorithms with similar concepts also perform
relatively similarly. Both the autoencoder and the Pca are
based on reconstruction errors, the anogan, kde and variational
autoencoder all model densities and DeepSVDD is partially
based on the concepts of the Ocsvm. All of these groups
perform quite similarly, reinforcing our belief that the diversity
of concepts is an important goal for each ensemble.

To study this further, we take a look at higher-order combi-
nations. Namely, we look at the average AUC score for each
ensemble that also considers two specific models simultane-
ously. This reduces our statics, but we still consider about 280
thousand ensembles for each combination of models.

In Figure 3 we show the average ROC AUC score of every
ensemble that includes two different submodels, again only



Fig. 3. Average AUC score of ensembles also considering two different
models. We compare this to the expected score considering the average
performance of both models individually. This means that each diagonal line
always has a difference in AUC score of 0.0. We removed the two most
extreme models Abod and Lmdd, to increase the readability of this plot.

for maximum (01) ensembles. We compare this AUC score to
the expected performance considering each submodel.

AUC(m1,m2, . . .)−
(AUC(m1, . . .) +AUC(m2, . . .))

2
(6)

A positive score (green color) means ensembles using both
models perform better than the expectation, while a negative
score (red color) means they perform worse than expected.
Overall, we see a group of models (from Abod, Inne till
autoencoder) that only have positive interactions with each
other. Because of this, we suggest using them to build an
effective ensemble.

But overall, this relation looks quite similar to the contribu-
tion of a single model. The same six models are either much
more or less useful than the rest. The only exception to this
are a few interactions that behave strangely, all including the
COF model. This also implies, that the strengths of the SOD
model might be undervalued in Figure 2.

VI. CONCLUSION

In this paper, we created the most extensive comparison
of combination procedures of heterogenous ensembles for
unsupervised anomaly detection by far. To the best of our
knowledge, we are also the first to study not only the effect
of different combination functions but also of various normal-
izations and the contributions of individual models.

Using insights from each of these, we extract the following
best practices for the creation of such ensembles:

1) From the set of algorithms (Abod, Inne, gmm, SOD,
DeepSVDD, OCSVM, HBos, Lof, knn, ifor, cblof, au-
toencoder) train as many models on the training data as
possible.

2) When computation time is a limiting factor, ignore some
of the later models.

3) Choose a combination procedure
• When it is possible to estimate the performance of

the resulting ensemble, choose a maximum combi-
nation function with a 01 normalization.

• If this is not the case, or the resulting ensemble per-
forms poorly, rely instead on a simple mean of the
model outputs, as well as a Zscore normalization.

4) Normalize each model output using the chosen nor-
malization and combine the resulting values using the
chosen combination function.

5) Use the resulting ensemble to score new samples.
From a research direction, we find that the benefit of

complicated combination functions is limited. Very simple
combination functions can outperform all of them. The maxi-
mum combination can be the best, but it is also very sensitive
to the effects of normalization functions. The opposite is
achieved by the mean combination function, which performs
slightly worse, but does so more reliably and less dependent
on normalization effects.

The most practical complicated combination functions are
threshold ensembles, which extend the mean by removing
the effects very normal samples have on the ensemble. Still,
also their benefit is limited and we do not see many possible
extensions to them.

We were also able to show that stacking for unsupervised
anomaly detection is a rather promising research direction.
Stacking methods can outperform each other combination
function in at least one of the metrics we considered. We think
they are only limited, because our approaches here are still
quite simple, and we want to encourage the reader to think
about more advanced stacking approaches.

To help with this, we publish
our code at https://github.com/KDD-
OpenSource/EvaluatingAnomalyEnsembles and combine
our ensembling methods into the python library
https://pypi.org/project/anoens. We also publish
the results of our individual models at https://tu-
dortmund.sciebo.de/s/tnCoUy9c6kknC18 to simplify including
new methods into a similar comparison.
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[24] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Outlier detection
in axis-parallel subspaces of high dimensional data,” in Advances in
Knowledge Discovery and Data Mining, T. Theeramunkong, B. Ki-
jsirikul, N. Cercone, and T.-B. Ho, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 831–838.

[25] M. Goldstein and A. R. Dengel, “Histogram-based outlier score (hbos):
A fast unsupervised anomaly detection algorithm,” 2012.

[26] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,”
Pattern Recognition Letters, vol. 24, no. 9, pp. 1641–1650, 2003.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167865503000035
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