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Abstract. Feature bagging models have revealed their practical usabil-
ity in various contexts, among them in outlier detection, where they
build ensembles to reliably assign outlier scores to data samples. How-
ever, the interpretability of so-obtained outlier detection methods is far
from achieved. Among the standard black-box models interpretability
approaches, we find Shapley values that clarify the roles of single in-
puts. However, Shapley values are characterized by high computational
runtimes that make them useful in pretty low-dimensional applications.
We propose bagged Shapley values, a method to achieve interpretability of
feature bagging ensembles, especially for outlier detection. The method
not only assigns local importance scores to each feature of the initial
space, helping to increase the interpretability but also solves the com-
putational issue; specifically, the bagged Shapley values can be exactly
computed in polynomial time.

Keywords: Explainable Machine Learning · Polynomial Shapley values
· Outlier Detection

1 Introduction

Detecting anomalous samples is a crucial task in various domains, ranging from
fraud detection in financial systems [12] to identifying defective components
in manufacturing processes [10]. Outlier detection can generally be categorized
into two paradigms: supervised and unsupervised. Supervised methods rely on
labeled data, explicitly defining and identifying anomalies during model train-
ing [11]. In contrast, unsupervised techniques operate without labeled anoma-
lies, making them particularly valuable when labeled data is scarce or costly.
Unsupervised outlier detection encompasses a myriad of approaches, each with
unique strengths and limitations. One notable trend for unlabeled data involves
ensemble methods; Ensemble techniques [31] leverage the diversity outputs of
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multiple potentially different base models to produce more robust and accurate
predictions, thus directly enhancing the performance and reliability of outlier
detection algorithms [1]. The nature of the base models divides the ensembles
among heterogeneous or homogeneous [14]; Some algorithms, e.g., DEAN [5] and
IForest [16], use homogeneity to profit from a higher number of submodels.

The importance of outlier detection underscores the need for accurate and in-
terpretable methods. Shapley values [25] have emerged as a promising technique
for interpreting the contributions of individual features in black-box models.
They offer mathematical guarantees of fairness that make them an attractive
choice for outlier detection as well. However, their practical application poses a
significant challenge due to the requirement of training an exponentially large
number of models. While significant progress has been made in anomaly detec-
tion interpretability [15], challenges persist. The trade-off between interpretabil-
ity and model complexity transferred to the computational complexity of the
feature importance scores, thus remains an interesting topic of investigation.

In response to this challenge, we propose an innovative approach that lever-
ages modern ensemble methods to approximate Shapley values efficiently and
makes outlier detection methods based on feature bagging interpretable. First,
we delve into the details, defining the bagged Shapley values and presenting a
theoretical proof of our approach. The experimental results demonstrate our
method’s effectiveness in achieving efficient interpretability in outlier detection
tasks with complex, high-dimensional data. The code is available on Github1.

2 Related Work

Ensemble methods for outlier detection Ensemble methods emerged as a
powerful paradigm for improving outlier detection algorithms w.r.t. reliability
and performance [14]. Ensemble methods comprehend bagging [3], boosting [24],
and stacking [23]. Bagging involves training multiple base models (e.g., k-nearest
neighbors, Support Vector Machines, neural networks, among others) on possibly
bootstrapped data samples and aggregating their predictions. Adapted to out-
lier detection, the ensemble’s collective decision provides more robust results [1].
Homogeneity among the base models’ types characterizes homogeneous outlier
ensembles: Submodels usually differ only by a different initialization. DEAN [5]
and Isolation Forest (IForest) [16] are prime examples of outlier detection meth-
ods employing such homogeneous ensembles; DEAN is based on multiple neural
networks, while IForest relies on a collection of isolation trees.

Shapley Values, for intepretability and beyond Shapley values [25]
originate from Cooperative Game Theory. Since their first applications, they
gained prominence as a powerful tool for increasing the interpretability of ma-
chine learning black-box models [18,26,21]. Shapley values offer a theoretically
sound framework for quantifying the impact of each feature or factor in a model’s
prediction; the scores, being the average marginal contribution across all possi-

1 https://github.com/KDD-OpenSource/ensemble shapley

https://github.com/KDD-OpenSource/ensemble_shapley
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ble feature combinations, are robust and interpretable. Attributing the contri-
butions of the individual features revealed helpful for outlier detection [28,29],
where Shapley values provide valuable insights into the importance of features
in identifying anomalies. However, their practical use is contrasted by one signif-
icant challenge, namely their computational complexity. The exact computation
of Shapley values requires evaluating a value function for every possible subset
of players. Thus, the consequent exponential blow-up in computational cost soon
renders their use for high-dimensional contexts infeasible. Approximation tech-
niques have been implemented to make Shapley values more accessible; These
include Monte Carlo sampling, stratification of players, and kernel approxima-
tions [6,7,18,4,27]. Each method addresses the efficient computation of Shapley
values differently, with potential accuracy and computational cost trade-offs.

Interpretability for anomaly detection methods Interpreting anomaly
detection methods is essential for understanding why single data points are
considered anomalous, e.g., in safety-critical applications. Feature importance
analysis plays an essential role [15]: Techniques such as feature attribution [9]
are employed to highlight which features have the most significant impact on
the detection. Additionally, we find rule-based models [19], decision trees [20],
and model-agnostic techniques like LIME [21] and SHAP [18] to shed light on
the decision-making process of anomaly detection models. Furthermore, visu-
alizations are essential for enhancing trust in complex scenarios. Examples are
heatmaps, scatter plots, and time-series representations [13,2].

3 Outlier detection ensembles

In our context, a set X ⊆ RN of data points can be parted into two subsets:
the set of normal observation indicated with Xnor, and the set of abnormal
observations, indicated withXabn. In unlabeled data, distinguishing normal from
anomalous data is not always straightforward. We consider a model for outlier
detection f , that aims at classifying each data point x ∈ X as either normal or
anomalous. Among the various anomaly detection methods, we focus on methods
that provide to each data point a score measuring its outlierness.

Definition 1. Given a set of data points X, we call model a function a : X 7→ R
where a(x) represents the outlier score assigned by a to the sample x.

The higher the value a(x), the more likely x is considered to be an anomaly
compared to the set X. On the same set X, various outlier detection models can
be constructed. We indicate with MX the set of models constructed on X.

Definition 2 (Ensemble). Given a set of (sub)models MX , an ensemble is a
function AMX

: X 7→ R that assigns to each x ∈ X its average outlier score,
i.e.,

AMX
(x) =

1

∥MX∥
∑

a∈MX

a(x). (1)
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The ensemble prediction is the average submodel prediction in the set MX .
Using the trick of projected data points in lower dimensional spaces, we reach

the definition of bagging. We indicate with N the set of coordinates of X and
with XI the set of data points in X projected only on the I ⊆ N coordinates
(or features), i.e., given x ∈ X the corresponding point xI = (xi)i∈I and I ⊂ N .
Now we can define a subset MXI

⊆ MX as the set of submodels that belongs
to MX trained only on XI .

The bagging procedure is meant to randomly cover the information in X,
considering only the projection of X in smaller-sized subsets. We refer to the
size of the data points in the projection as bag. Having X ⊆ RN fixed and
bag ≤ N , we can get

(
N
bag

)
different subsets of size bag from the N features.

Definition 3 (Bagging). After fixing the bag, the bagging procedure consists
in defining the model bS,a ∈ MS such that bS,a(x) is the result of a model a when
trained on the data set XS and S is a subset of N whose size is |S| = bag.

The bagging procedure does not fix either the model a from MX or the set
S ⊆ N , thus potentially covering, using sufficiently many random seeds, all the
information contained in X. We write bS,a|seed for the specific bagging submodel
resulting after we fixed the seed for the random sampling of S and the model
a. Finally, we can construct the so-called feature bagging ensemble based on the
bagging technique.

Definition 4 (Feature Bagging). Given a dataset X and a set of models
MX , we define the function fMX

: X 7→ R such that it assign to each x ∈ X
the score defined as

fMX
(x) = lim

n→∞

1

n

n∑
j=0

bS,a|seed[j](x). (2)

where seed is an eventually infinite vector of randomly drawn seeds.

A similar definition could also be made for non-outlier detection ensembles as
long as the output is a linear combination of the submodel predictions. Still,
feature bagging is most commonly used in outlier detection.

4 The bagged Shapley values

A cooperative game is a pair (N , v) where N represents the set of players, and
v is a function over the subsets of N . v assigns to each coalition of players
a worth, i.e., a positive real number representing the score obtained by the
players as a team. Usually, the monotonicity of the value function is assumed,
i.e., v(A) ≤ v(B) if A ⊆ B ⊆ N .

The Shapley values are a fair assignment of weights to the single players
that consider the role of the single players in any single coalition. Given a game
(N , v), ϕv(i) represents the Shapley value of player i:
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Definition 5 (Shapley Value). Given a game (N , v), the Shapley value ϕv(i)
of player i is defined as

ϕv(i) =
∑

S⊆N ,i/∈S

|S|! · (|N | − |S| − 1)!)

|N |!
[v(S ∪ {i})− v(S)] (3)

We refer to v(S ∪ {i}) − v(S) as the marginal contribution of i to S. Shapley
values have a flexible and straightforward definition, depending only on v and the
number of players; this made them the object of study in various circumstances
and applications. However, their computation results in an NP-hard problem
that approximation approaches can only partly solve. We show that the exact
computation of Shapley value-similar scores for feature bagging ensembles can
be easily reduced to a polynomial time.

We introduce the bagged Shapley values; their definition perfectly aligns with
the impossibility of training an ensemble method with less than bag features.
We rewrite the definition of Shapley values from Equation (3) ϕfMX

(x)(i) for

feature bagging ensembles, where x ∈ X ⊆ RN is a data point, fMX
is the

feature bagging model and we are interested in assigning to the coordinate i of
X an importance score in predicting the overall outlier score fMX

(x). We define
the bagged Shapley values:

Definition 6 (bagged Shapley Value). Given a set of data points X ⊆ RN ,
a set of (sub)models MX and a feature bagging model fMX

defined over MX ,
the bagged Shapley values are the values

ϕ̃fMX
(x)(i) =

∑
S⊆N ,i/∈S,s≥bag

N

N − bag

s! · (N − s− 1)!)

N !

[
fMXS∪{i}

(x)− fMXS
(x)
]

(4)

This equation removes terms with magnitude ∝ bag
N , a necessary step, as defining

an ensemble model with less than bag features is not possible. Notice that the
higher the dimension of the data points inX is, the smaller the difference between
ϕ̃fMX

(x)(i) and ϕfMX
(x)(i). To somewhat correct for this difference, we add a

factor N
N−bag to compensate that we are summing over fewer subsets of N .

5 Theoretical guarantees for the approximation

The main result of our studies regards the chance to express Shapley values with
a limited number of selected bagging submodels, thus avoiding the exponential
computational costs of Shapley values.

Theorem 1. The bagged Shapley values can be expressed using a selection of
submodels involved in the feature bagging ensemble fMX

. In particular, it holds

ϕ̃fMX
(x)(i) ∝ fMX

(x)− fMXN\i
(x).
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Proof. To increase readability, we use the notation

k(S,N) =
N

N − bag

s!(N − s− 1)!

N !

where s = |S| and N = |N |. For abuse of notation and readability, we write S
instead of XS throughout the whole proof.

Now, we can rewrite the bagged Shapley values in the following way bS,a|seed
and substitute it with b|seed ∈ MS

ϕ̃fMX
(x)(i) =

∑
S⊆N ,i/∈S,s≥bag

k(S,N)
[
fS∪{i}(x)− fS(x)

]
= lim

n→∞

∑
S⊆N ,i/∈S,s≥bag

k(S,N)

·

(∑
j=0,...,n,b∈MS∪{i}

b|seed(x)

∥MS∪{i}∥
−
∑

j=0,...,n,b∈MS
b|seed(x)

∥MS∥

)

where MK = {a ∈ MX | a restricted to features in K} is the subset of models
that contain only features included in K.

From the previous equation, we see that ϕ̃fMX
(x)(i) is a sum over the same

bagging models multiple times, as they are part of various subsets. We can
simplify the writing to evaluate each model only once but weight them.

ϕ̃fMX
(x)(i) = lim

n→∞

1

∥MX∥
∑

b∈MX

αb ·b|seed(x)−
1

∥MN\i∥
∑

b∈MN\i

βb ·b|seed(x) (5)

Noting that we can shuffle our feature labels without changing Equation 5, αb =
α and βb = β have to be independent on the specific model b|seed. By the same
argument, α and β can not depend on the model outputs b|seed(x). This allows
us to choose any model b(x) to compute them; we pick here

b(x) =

{
1 if model b considers feature i

0 else
. (6)

Using the proposed b(x), the β term disappears, thus we can write α as:

α = lim
n→∞

∑
S⊆N ,i/∈S,|S|≥bag k(S,N) ∥MX∥

∥MXS∪{i}∥

∑
b∈MXS∪{i}

b(x)∑
b∈MX

b(x)

= lim
n→∞

∑
S⊆N ,i/∈S,|S|≥bag k(S,N) ·

count(MXS∪{i} )

∥MXS∪{i}∥

count(MX)
∥MX∥
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where count(MXK
) is the number of models in MXK

that contain one specific

feature in K. We can use limn→∞
count(MXK

)

∥MXK
∥ =

(|K|−1
bag−1)
(|K|
bag)

= bag
|K| thus getting

α =N
N

N − bag

N−1∑
s=bag

(
N

s

)
· s!(N − s− 1)!

N !
· 1

s+ 1

=
N

N − bag

N−1∑
s=bag

· 1

s+ 1

=
N

N − bag
· (ψ0(N + 1)− ψ0(bag + 1))

with the digamma function ψ0.
When instead of choosing b(x) to be independent of i, we find that ϕ̃fMX

(x)(i) ∝
(α − β). But since the feature is designed not to have any effect, we know that
ϕ̃fMX

(x)(i) = 0 and thus α = β. This concludes the proof.
⊓⊔

The results not only show that the bagged Shapley value is proportional to
the difference of two feature bagging, respectively defined on MX and MXN\i ,
but also that when using bagging models, we can estimate the bagged Shapley
values in polynomial time. This is because for deterministic submodels, instead
of using ∞ of them, we only need to train

(
N
bag

)
< N bag submodels.

6 Experiments

We evaluate our approach on various freely available real-world datasets with
varying numbers of features [30,8,17]. We conduct experiments on the correct-
ness of the approximation (Section 6.1), the effectiveness (Section 6.2), and the
scalability (Section 6.3) of our approach.

6.1 Quality of the Approximation

To fairly investigate the approximation accuracy of the bagged Shapley values,
we use a low-dimensional dataset, i.e., the five-dimensional phoneme dataset[30],
thus requiring the training of feature bagging ensemble models only 25 times. The
low-dimensionality of the dataset allows us to compute the non-approximated
version of Shapley values without incurring extremely long runtimes. We train
isolation trees from [16] with a bagging size of 2 and simplify the anomaly score
from [16] to fit our methodology by using the negative average path length
over all trees as an indicator of anomalies. We train one million submodels and
average the obtained results to guarantee consistent and robust results. The total
training takes about 70min of CPU time2. The ROC-AUC score is 0.733.

2 All experiments were performed on Intel Xeon E5 CPUs. In the paper, we stick to
CPUs over GPUs also when we use neural network submodels; the choice is justified
by the higher amount of parallelization they allow.
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Fig. 1. Left: Plot of the bagged Shapley values against the exact Shapley values for each
data sample in the phoneme dataset. Right: Shapley values and their approximation
for two example samples. The color-coding of the features is represented in the legend.

We separate the trained models into ensembles for each subset of them and
compute the exact Shapley values and the bagged Shapley values. We combine
the values obtained into Figure 1. As the mapping lies on the diagonal line, we
conclude that the approximation works well on all data points.

6.2 Effectiveness

We can compute the bagged Shapley values for datasets whose dimensions are too
high for an exact computation. We focus on the MNIST dataset [8], a collection
of images of hand-written digits usually used to train image-recognition models.
Following the approach of [22], we consider normal all images representing a
handwritten 7, and anomalous the images representing other digits. Each image
has a resolution of 28 ·28, i.e., we handle 784 features in each image. Computing
the exact Shapley values for the single pixels requires 2784 ≈ 10237 evaluations,
a number significantly larger than the computational power available.

For the bagged Shapley values, we use the bagging size bag = 32. We train
two models: we use DEAN, a deep learning model-based ensemble, and a shallow
isolation forest [16]. We choose DEAN [5] because of its inherited feature bagging
and relatively low training time per submodel. The training time is significantly
longer than using IForest3. Note that we do not only train a model on each
possible subset, as the number of subsets is still

(
768
32

)
≈ 4 · 1032. Instead, we

train on random subsets until the result converges. This also helps deal with the
random nature of our algorithms.

Figure 2 represents the plots of the Shapley values for five representative
samples in the form of heatmaps; bright colors represent high score, i.e., features
highly increasing the outlier score. Each heatmap, both for DEAN and IFOR,
highlights the changes to the original input that would make it closer to a nor-
mal observation by highlighting the erroneous regions. From the left to the right
side, the first two input images are labeled as normal; however, they still contain

3 The isolation forest takes about 220min of CPU time. DEAN requires about 113days;
However, the independent ensembles are easy to parallelize, and less accurate results
can already be achieved with ten thousand submodels (27hours).
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Fig. 2. MNIST dataset. The original images are in the top row. The bottom rows
contain the derived bagged Shapley values heatmap for ISOR and DEAN. We rescaled
the color legend to the upper and lower bound of the Shapley values in each plot.

features that are not expected, e.g., the middle horizontal line in the first image.
These unexpected features are highlighted in bright red/yellow. Similarly, the
other three images obtain high outlier scores, although they contain typical fea-
tures for normal input images. These features are also unexpected by the model
and thus result in high Shapley values. Examples are represented by the nine
and the four; removing the lower line from the circle would make the nine more
similar to a normal observation, while adding a horizontal line to the top would
make the four more similar to a seven.

Comparing DEAN and IForest, we see how the understanding of the normal
concept, i.e., the digit “seven”, of the isolation forest is too simple to explain the
predictions entirely. In the second column of Figure 2, we see that the isolation
forest expects the tail of the seven to bend instead of going straight down. On
the other hand, DEAN, based on a deep learning method, has less difficulty in
learning a broader concept of seven. This is also reflected in the outlier detection
performance: While DEAN reaches a ROC-AUC of 0.9698 on the dataset, the
isolation forest only reaches a lower 0.9118 score. We strongly believe that the
bagged Shapley images provide useful insights into what the model understood
and learned from the training data, additionally to better performance measured
by the ROC-AUC metric.

6.3 Scalability

We select the celebA dataset [17] to study how the approach scales to larger
datasets. celebA contains images with 218 ·178 = 38804 pixels, which we convert
to grayscale to simplify the plotting later. In the previous section, we showed
how complex patterns can overwhelm outlier detection ensembles that strug-
gle to learn a proper schema for normal and abnormal data points. Thus, we
aim to maximize the separation between normal and abnormal classes in order
to simplify the learning task. We divide the dataset into normal and anomalous
instances, where we characterize a normal observation being labeled with the at-
tributes “female”, “young”, “attractive”, and “not bald”. The inverse attributes



10 S. Klüttermann et al.

E
xp

ec
te

d
U

ne
xp

ec
te

d

Fig. 3. Analysis on the celebA dataset. Heatmaps show the bagged Shapley value;
Brighter colors indicate higher values.

characterize an abnormal observation. Here, the choice of attributes was only
guided by the distribution of attributes in the dataset, and similar results would
likely have followed any other choices for the anomalous and normal classes. We
only trained the DEAN ensemble on the dataset, as the model proved to handle
complicated attributed data better. We represent the obtained bagged Shapley
values as heatmaps on five different images in Figure 6.3. The first row is the
input image, while the second contains the corresponding Shapley values. The
images resulting from the bagged Shapley values plotting have high resolution
and show some features as more anomalous; However, the designed features do
not match the designed separation in normal and abnormal images. This can also
be seen in the ROC-AUC score of 0.6184. The most anomalous features seem
to be (from left to right) the bindi, the partially covered forehead, the shirt
collar, the laugh lines, and the skin paint transition. These are rare features in
the images of young women in celebA, thus considered anomalous by the model.
Still, the complexity of the separation is likely too big for the available samples
(≈ 72000), and thus, the learning, as shown by the ROC-AUC, is inaccurate. Al-
though the features outlined are not the expected ones from our understanding
of the separation between the two classes, it is worth noticing how the bagged
Shapley value maps can be used to understand and improve the outlier detection
models. The runtime of the training procedure for one million DEAN submodels
is ≈ 468 days; training 500 submodels at the same time requires about 4 days
of CPU time. We use 4 millions of submodels in our training setup, under par-
allelization assumption, and set up the bagging size to be bag = 32. A different
bagging size might have achieved more accurate results, but we did not optimize
it since, in most contexts, the outlier detection task sets the bagging size.

We finally want to characterize the minimum number of submodels needed
for our methodology to perform well. For this, we calculate the bagged Shapley
values maps so that each feature is used 10, 100, and 1000 times. The correspond-
ing maps for the center image from Figure 6.3 are shown in Figure 4. While some
features are already visible at about 12000 submodels, the noise level being still
very high, facial features are undetectable; with about 10, those become visible
while extensively the number of submodels to about 100 times more, they have
become clear. As a rule of thumb, we suggest training 10 ·N features to visualize
the basic features and to train 10 ·N 3

2 for clear images.
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Fig. 4. Shapley value maps for different numbers of submodels. Here we use 12127,
121263 and 1212625 submodels, so that each feature is approximately sampled 10, 100
and 1000 times. The times stated assume a parallelization with 500 CPUs.

7 Conclusions

Detecting and explaining outlier can be highly complicated. Shapley values by
their side offer a flexible definition, easily applicable to this context; However,
their high computational costs represents an often insormontable downside that
makes their exact computation often unfeasible.

We combine Shapley values with ensemble techniques, specifically focusing
on feature-bagging ensembles for outlier detection. The bagged Shapley values
offer an advantageous reduction of the computational costs, giving the chance
to compute importance scores for settings with tens of thousands of features.
Furthermore, we showed the value of highlighting anomalous features in images
to obtain insights into the features learned by the outlier detection method.

We believe that combining Shapley values with ensemble methods can boost
the use of Shapley values in the Machine Learning community, showing advan-
tages from a computational and interpretability point of view, as well as lead to
better, more reliable, outlier detection models.
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