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Abstract

In many application domains, time series are monitored to
detect extreme events like technical faults, natural disasters,
or disease outbreaks. Unfortunately, it is often non-trivial to
select both a time series that is informative about events and
a powerful detection algorithm: detection may fail because
the detection algorithm is not suitable, or because there is
no shared information between the time series and the events
of interest. In this work, we thus propose a non-parametric
statistical test for shared information between a time series
and a series of observed events. Our test allows identifying
time series that carry information on event occurrences
without committing to a specific event detection methodology.
In a nutshell, we test for divergences of the value distributions
of the time series at increasing lags after event occurrences
with a multiple two-sample testing approach. In contrast to
related tests, our approach is applicable for time series over
arbitrary domains, including multivariate numeric, strings or
graphs. We perform a large-scale simulation study to show
that it outperforms or is on par with related tests on our
task for univariate time series. We also demonstrate the
real-world applicability of our approach on datasets from
social media and smart home environments.

1 Introduction

Event detection in time series is an active research topic
for at least two decades [14] [1I'7, [25] I} [T9] 28]. Typical
event detection algorithms monitor a time series for
anomalies, extreme values or changes in the probability
distribution, in the hope that these patterns coincide
with some exogenous event of interest. Prominent
examples are the detection of earthquakes [25] [0, 24] and
public health issues [23], 18] from social media time series.
The fundamental assumption of any event detection
method is that there is a statistical association between
the behavior of the time series and the occurrence
of events: if the time series and the event series are
statistically independent, it is impossible to detect events
by observing the time series.

In practice, there are numerous ways in which a time
series and an event series can be statistically associated.
Some associations are easy to exploit for event detection,
others require more advanced technologies or cannot
be exploited effectively. Figure [1] shows three example
pairs of event series and time series, where each pair is
coupled differently. In the simplest case, events lead to
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temporary fluctuations of the mean of the time series, as
illustrated in Figure[l| (top left). Every event occurrence
induces the same shape in the time series. The boxplots
in Figure 1| (top right) summarize the value distributions
of the time series given that the last event occurrence was
k=1,...,15 time steps ago. They show that the mean
varies for a few time steps and then stabilizes. However,
events can have more subtle effects. In Figure |1| (middle
row), events temporarily increase the variance of the
time series—as indicated by wider boxes and whiskers in
the first few boxplots. In Figure [1] (bottom row), events
increase the risk of extreme observations from the tails
of the distribution—as indicated by a larger number of
outliers in the first few boxplots. Such visual analyses are
limited to univariate numeric time series. If we consider
multivariate numeric time series, or time series of strings
or graphs, it is unclear how to proceed visually, and
quantitative statistical methods are required.

A natural way to assess whether there is a statistical
relation between past event occurrences and present
values of the time series is to perform a statistical test for
causality, e.g., Granger causality [10] or non-zero transfer
entropy [26]. However, existing tests are restricted to
univariate time series, to impacts in mean, or have
estimation issues. We thus propose a novel statistical
independence test between the current value of the
time series and past values of the event series. Our test
can be embedded in the information-theoretic framework
of causation entropy [27] that generalizes Granger
causality and transfer entropy. Algorithmically, we test
for independence by testing for pairwise divergences in
the distributions of the time series at increasing lags
after event occurrences. This allows us to leverage
recent advancements in two-sample testing [I1], and
makes our test applicable to time series from arbitrary
domains, including multivariate numeric, string or graph
data. In a large scale simulation study, we evaluate
the power of our test against tests for Granger mean
causality and non-zero transfer entropy. Furthermore,
we demonstrate the real-world applicability of our test
with use cases from social media analysis and household
electricity monitoring.
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Figure 1: Different types of event impacts in a time series. Vertical lines (orange) indicate event occurrences. The
boxplots on the right depict, for every time series, the empirical conditional value distributions, given that the last
event occurred k time steps ago: P(X; | Br—r =1, Et_p41 =0, ..., E; = 0).

2 Related work

Causal inference. Our closest competitors are
tests for causal inference in time series. Granger
causality [10] and transfer entropy [26] are notions
of statistical association between time series used to
identify cause-effect relationships. Same as our test,
they can be subsumed in the framework of causation
entropy [27]. We include them as competitors in our
experimental evaluation. Both assume that the target
time series is univariate, and can only be tested
independently per dimension on multivariate target time
series. Traditionally, Granger causality tests focus on
the conditional mean of the time series and utilize a
likelihood ratio statistic based on vector autoregressive
models. More efficient estimators have been developed,
e.g., based on state-space models [2], based on kernel
regressions to capture non-linear couplings [21], and
other nonparametric predictors [3]. By design, they all
fail to capture causal effects that do not alter the
conditional mean of the distribution. Departing
from causality in mean, a few nonparametric tests for
general-sense Granger causality,—mnot restricted to the
conditional mean—, have been proposed [16], 6 22],
However, the vast majority of tests are established
for real-valued time series only: it is unclear how
they perform on time series over other domains. Our
approach is not restricted to real-valued time series,

but operates on all types of data, if a two-sample
test is available. A notable exception are tests based
on transfer entropy [4]: they directly operate on the
conditional distributions and are thus nonparametric and
applicable for numeric and categorical data. Transfer
entropy measures information flow between time series,
and can be used as a nonparametric statistic to test
for general-sense Granger causality. However, transfer
entropy inherits the difficulties in estimation of
mutual information and entropy [], which limits its
detection performance. Our approach is nonparametric
and has a high detection performance.

Two-sample testing. Methodologically, our test
heavily relies on multiple two-sample testing. In two-
sample testing, the problem is to decide whether two
random samples come from the same probability distri-
bution, or from different distributions. The most well-
known two-sample test is Student’s t-test that compares
the means of two distributions. For univariate contin-
uous data, the Kolmogorov-Smirnov (KS) two-sample
test compares the complete empirical distribution func-
tions [29], but suffers from estimation issues. Recently,
kernel-based approaches to two-sample testing have been
developed [11] 12, 13, [30] that are applicable for arbitrary
domains. A more comprehensive review of two-sample
testing can be found in [11].
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3 Independence Problem

3.1 Terminology. A time series is a random process
X = {Xi}tez where all X, for t € Z are random variables.
An event series € = {E4}iez is a specific time series with
discrete random variables E; that take only the values 0
and 1. The outcome E; = 1 indicates that there is an
event at time t. A random process Z is stationary if for
all k € Nand tq,...,tx € Z, the joint probability density
function (or joint probability mass function in case of
discrete outcomes) of Zy,, ..., Z, is shift invariant, i.e.,
]P)(Ztla-na Ztk) = ]P)(Ztl-‘,—hy ceey Ztk+h) for all h € Z. Two
processes X and & are jointly stationary if the bivariate
process {(Xt, F¢)}tez is stationary. Throughout this
work, we make the standard assumption that X and £ are
jointly stationary, such that their statistical association
can be estimated from a single observed pair.

3.2 Problem statement. Let X_; and £.; denote
the histories of the two series up to time t — 1. The
histories may be cropped at some lag [, such that
Xy = th) = {Xi—1, ..., X¢—1}, and analogously for £;.
We address the following hypothesis testing problem:

PROBLEM 3.1. Given a time series X and an event
series €, test the null hypothesis

(31) HO : ]P(Xt ‘ g<t) = ]P)(Xt)

against the alternative hypothesis

(32) H1 : P(Xt | 5<t) 7& ]P(Xt)

Problem [3.1]is an independence test between a single
random variable X; and a set of random variables £.; =
{E:_i, ..., Et_1}. The challenge is to efficiently test this
independence without making restricting assumptions
on the domain of X', and avoiding estimation issues that
limit the practical applicability.

3.3 A family of tests. The test above belongs to a
family of tests subsumed under the information-theoretic
framework of causation entropy [27]. Let X and Y be
two time series, and S be a set of time series. Causation
entropy is a measure for information flow from ) to X,
taking all additional information from the set S into
account. If there is no information flow, the time series
are conditionally independent. Formally, let H(- | -)
denote the conditional entropy [5].

DEFINITION 3.1. (CAUSATION ENTROPY) The causa-
tion entropy from Y to X conditioned on the set of
time series 8 is the conditional mutual information of
X; and Yoy given Sy

(3-3) (C)/%X\S = H[Xt | 8<t] - H[Xt | S<t7y<t]-

The causation entropy Cy_, x|s is zero if and only if the
conditional independence

(3.4) P(Xy | Y<t, S<t) = P(Xy | S<i)

holds. If the conditional independence does not hold,
the causation entropy is positive.

Different choices of the set of conditioning time
series S result in different independence tests. In
transfer entropy and Granger causality, the target time
series itself is used in the condition, ie., & = {X}.
Additional time series may be included in & to take
potential confounding factors into account, but this
makes estimation harder. With & = () and Y = &,
we obtain the independence test in Problem From
an information theoretic point of view, we thus test for
non-zero unconditional causation entropy from the event
series to the time series. By employing an empty set
of conditions, our test explicitly ignores the effect of
confounding factors to increase sensitivity. The detected
associations may be indirect or due to common drivers—
but still useful for event detection.

4 Two-Sample Test Approach

Our approach exploits the binary nature of the event
series £ to solve Problem [3.1] heuristically. To this end,
we apply a fundamental independence criterion for mixed
random variables. We start with the general idea and
provide technical details below. Independence of mixed
random variables can be characterized by equality of all
conditional probability density functions:

THEOREM 4.1. ([29]) Let A and B be random variables,
where A is continuous and B is discrete with K outcomes
0,...., K —1. A is independent of B, if and only if all
conditional probability density functions are identical:

L PAIB) =P
(45) <PA|B=0)=..=PA|B=K-1).

Independence of A and B may thus be assessed
by pairwise comparisons of the conditional distribution
functions. Given a sample of independent and identically
distributed (i.i.d.) pairs from A and B, the conditional
distributions can be compared with multiple pairwise
two-sample tests. If any of the two-sample tests finds
significant evidence that the two underlying conditional
distributions differ, the null hypothesis of independence
must be rejected.

4.1 Naive approach. Mapping this idea into our
problem setting, we could naively encode the event
history €. = {Fi_,...,Ft_1} as a single discrete
random variable with K = 2! possible outcomes. The
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original outcome E; ; = €_y,....,F; 1 = €_1 with
er € {0,1} would then correspond to the base-2 number
(€:—1y ..y €t-1)2 € {0,...,2 —1} in the novel encoding. For
a fixed lag [, we could then directly apply Theorem [£.1]to

test the independence in Problem [3.1] by obtaining i.i.d.

samples from the 2! conditional distribution functions
and testing for pairwise equality. However, with this
naive approach, we will run into two severe estimation
problems: (1) The exponential number of possible
outcomes means that a large number of tests have to

be performed, which reduces the detection performance.

(2) Event series are usually sparse, meaning that many
outcomes will never be realized, and no i.i.d. samples can

be obtained. The naive approach is thus not operational.

4.2 Reducing the number of tests. A key idea
of our independence test is that we can detect an
association between the past of the event series and
the current value of the time series without testing all
conditional distributions for divergences. Formally, let
(4.6)

FE e =PXy | Bk =€0,..., By = ek)

yEK
denote the event-conditional distribution function of
order K € N for an outcome ¢y, ...,ex. For a fixed
K, there are 25+1 such distribution functions, many
of which are not realized in practical instances with
sparse events. For increasing k = 0,1, 2, ..., the specific
distribution functions Fllio,...,o describe the conditional
distributions of X; given that the most recent event
happened k time steps ago. These distributions are
always realized in practical instances as soon as there is a
single event in £. The number of samples per distribution
Flk,o,...,o directly corresponds to the number of events
in £. The boxplots in Figure [1| (right) depict these
distributions for different kinds of impacts.

We assume that events have a strong association
with observations that follow immediately in the time
series, and little to no association with observations
that are far away. We thus propose to test only the
event-conditional distribution functions Flk,o,...,o with
k=0,..., K for divergences, where K € N is some upper
limit. If all of these distributions are identical, there is no
evidence for a statistical association between the event
series and the time series. If any pair of these distribution
functions diverges, we reject the null hypothesis of
independence in favor of shared information. Formally,
we simplify the hypotheses from Problem [3:1] and test
(4.7) Hy:FY =Fly=..=F%
versus Hi : =H{. By focusing on this specific selection
of conditional distributions, we address both estimation
issues mentioned above: we decrease the number of

Algorithm 1 Multiple test procedure

1: function EITEST(X, ¢, K)

2: for k=0,..., K do

3: Te:=A{x¢ | et—x =1,e4—41 =0,...,e, =0}
4: end for

5: fori=0,..,K —1do

6: for j=:¢+1,...,K do

7: pij := TWOSAMPLETEST(T;, T;)

8: end for

9: end for
10: M := (K -(K+1))/2

11: D1, -y DM = SORTINCREASING({ps; | ¢ < j})
12: return min,, {% - P

13: end function

conditional distributions to compare from 25+ to K +1,
and we work with conditional distributions that are
realized for sparse event series. Since we ignore many
conditional distributions, the resulting test procedure
does not solve Problem exactly, but heuristically.

4.3 Multiple test procedure. We test the pair of
hypotheses Hj and Hj from above with the multiple test
procedure specified in Algorithm [1] We refer to our test
as EITEST (Event Information TEST). The input is a
realized pair of time series X = {z1,...,xr} and event
series £ = {ey,...,er} with N = Y e; events, along
with the maximum lag parameter K. The output of the
algorithm is a p-value. If the p-value is smaller than
the desired significance level «, we reject Hy) in favor
of H{. In line 3, samples T from the event-conditional
distribution functions F1k,0,...,0 are obtained. In line 7, the
pairwise two-sample tests are called, where the output of
the two-sample test is a p-value. In lines 11 and 12, the
obtained p-values are corrected for multiple testing with
Simes adjustments [7]. Details on sample construction
and error rate control are given below. The complexity is
O(KT+K?(g(N)-log K)), where g(N) is the complexity
of the underlying two-sample test. g(-) is a function of
N since all samples 7 contain at most N observations.
Typically, K is a small constant K < T, and the event
series is sparse with V < T. The total complexity is
thus asymptotically dominated by a term that is linear in
T, which makes EITEST highly computationally efficient
for long time series and event series.

4.4 Sampling the distributions. The two-sample
tests require i.i.d. samples from the distribution functions
Flk,o,...,o~ Any observation x; with e;_, = 1,¢;_p11 =
0,...,e; = 0 is a realized value from the distribution
Flk,o,...,o- In line 3, we thus obtain disjoint samples
by assigning observations from the time series to K
subsets Ti such that every value x; is assigned to T
if and only if e,y = 1 and e;—gy1 = 0,...,e; = O.
However, the individual observations in 7T, are not, in
general, independent. In practice, even if two random
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variables X; and Xy from X are not strictly conditionally
independent given F;_g,...,Fi_1 and Ey_g, ..., Ey_q,
long-range dependencies are often weak, i.e.,

P(Xtht’ | Etfkia "~7Et717 Et/fk, sy Et’fl)
~ P(X: | Erpoy ooy Br1) - P(Xe | By iy ooy Br1)

for all |t —¢/| > [ with some large [ > k. In other
words, X; and X are approximately independent if
they are far enough apart. If serial dependencies are an
issue, additional constraints can be imposed to ensure
hard minimum distances between individual observations
within a set 7 as well as between observations across
pairs of sets T and Tg.

4.5 Controlling the family-wise error rate. In
any statistical hypothesis test, the false positive rate
is controlled at significance level a by rejecting the
null hypothesis only if the p-value returned by the
test is smaller than «. In standard testing problems
(no multiple testing), the p-value is directly computed
from a test statistic T" that collects evidence against the
null hypothesis. The p-value specifies the probability of
obtaining a value of T at least as extreme as the observed
one, under the assumption that the null hypothesis is
true. When performing multiple hypothesis tests, we
obtain many p-values: one for every test. We need a
procedure that rejects the individual null hypotheses
such that the false positive rate of the complete null
hypothesis is controlled at level a—mnot the false positive
rate of the individual tests. In our case, we have a family
of individual null hypotheses

(4.8) Gy’ - Ffoo = Flj,o,“.,o

for 0 < i < j < K, with alternative hypotheses

(4.9) Gy Fig o# Ff,o,i..,o-
The complete null hypothesis H{ is that all of the null
hypotheses from the family are simultaneously true. If
any of the individual null hypotheses is rejected, H| is
rejected in favor of shared information. We do not care
which of the null hypotheses is false. In this scenario, the
family-wise error rate (FWER) [7] is a suitable choice for
the false positive rate of the complete null hypothesis.
Formally, let G = {Gé’j [0<i<j< K} be the
set of all null hypotheses, 7 C G be the set of
true null hypotheses and R C G be the set of null
hypotheses rejected by some procedure. The FWER
is the probability that at least one of the true null
hypotheses is rejected, i.e., P(T "R # 0) [8]. To
guarantee P(T N'R # ) < «, we use Simes adjustments
[7]. Let M :=|G| = K - (K + 1)/2 be the total number

of pairwise two-sample tests, and p1, ..., pys be the p-
values returned by the tests, ordered increasingly. We
reject the complete null hypothesis Hy if p,, < fja for
any m =1,..., M. The corresponding adjusted p-value
for the multiple test decision can be obtained from the
individual p-values as min,, {2£p,,}.

5 Experiments

We evaluate EITEST against the standard Granger
causality test based on VAR models (GC-VAR) and
a test for non-zero transfer entropy (TE-KSG). We
perform a large-scale simulation study, where we assess
the performance of all approaches on coupled pairs of
time series and event series, generated by different event
impact models. We also generate uncoupled pairs by
randomly permuting the event series after generating
a coupled pair. To assess the detection performance of
all approaches, we report their true positive and false
positive rates. At last, we demonstrate the utility of our
test with two real-life applications.

Evaluation measures. A true positive is a cou-
pled pair of time series and event series, generated by
any of the event impact models described below, that is
correctly detected as being coupled. A false positive is an
uncoupled pair that is falsely detected as being coupled.
The corresponding true positive rate (TPR, power) and
false positive rate (FPR) are obtained by normalizing
over the total number of coupled and uncoupled pairs,
respectively. TPR should ideally be close to 1, whereas
the FPR should be upper bounded by the significance
level o that was chosen for the test.

Setup. We set the significance level to a = 0.05.
In EITEST, we use the maximum lag K = 32. We
report results with the Kolmogorov-Smirnov (KS) two-
sample test [29] and the Maximum Mean Discrepancy
(MMD) test [1I] with default RBF kernel and Gamma
approximation to the null distribution. For GC-VAR,
we use a history of length | = 32. For TE-KSG, we set
[ = 1—higher values required significantly more running
time. For a fair comparison, we parameterize all models
such that events have impacts at lag 1.

Implementation. We implemented EITEST in
Python, using the KS two-sample test from the SciPy
packageﬂ and the MMD two-sample test provided by
its authorg’} For GC-VAR we used the implementation
from the statsmodel#ﬂ package. TE-KSG was esti-
mated with the Java Information Dynamics Toolkit
(JIDT )lﬂ Supplementary material and code can be found
on https://github.com/diozaka/eitest.

Thttp://wuw.scipy.org/
%http://www.gatsby.ucl.ac.uk/~gretton/mmd/mmd . htm
Shttp://www.statsmodels.org/
4http://jlizier.github.io/jidt/
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5.1 Simulation study. We now describe the three
event impact models used for evaluation and report the
performances of all tests. In the first model, events
have impact on the mean of the time series, in the
second they modulate its variance, while in the third
they alter the tails of its distribution. In all experiments,
we first generate an event series of length 7" with N event
occurrences by sampling (without replacement) N time
steps t1, ..., tny and setting F;, = 1 for these time steps.

Impacts in mean. We modulate the mean of the
time series by a moving average model [15] of order ¢ € N
that uses events as innovations:

q
Xe=> ¢iEij+ Z.

j=1

(5.10)

The weights ¢ = [¢1, ..., ¢4] € R? determine the shape
of the event impacts and Z; ~ N(0,1) is an error term.
We control the signal to noise ratio ry, between event
impacts and error term by sampling ¢ ~ N (0, 7y, - I,;).
In this model, every event has the same deterministic
impact on the time series and overlapping impacts simply
add up. Large values of ¢ introduce long-range temporal
impacts that may lead to severe overlaps and complicate
the detection problem.

Impacts in variance. We modulate the variance
of the time series by sampling from a normal distribution
with variance depending on the event series lagged by
q € N time steps:

(511) Xt ‘ Et—q ~ N(O, 1 + 7y - Et—q)~

The factor r, > 0 specifies the increase in variance
induced by event occurrences. The larger the value of
ry, the stronger the impacts, and the easier—at least
theoretically—the detection. By construction, the event
impact model from Equation[5.1T]alters only the variance
of the distribution, and no other property. In particular,
the mean remains unchanged.

Impacts in tails. At last, we modulate the tail
behavior of the time series by sampling either from a
normal distribution (light tails) or from Student’s t-
distribution (heavy tails), depending on whether there
was an event occurrence at lag g:

) i B =0,

N (0,5
Student-t(ry), if By_4,=1

(512) Xt ‘ Etfq ~ {

The parameter r; > 3 specifies the degrees of freedom
for Student’s t-distribution. A random variable Z ~
Student-t(ry) with r¢ > 3 has mean E[Z] = 0 and
variance V[Z] = r:i2' Therefore, the model for impacts
in tail behavior does not alter the mean or variance of
the time series. For ry > 3, Student’s t-distribution

approximates a normal distribution. Detection of event
impacts is thus easiest for small values of 7y and becomes
more difficult for larger values.

Benchmark and results. Our default parameter-
ization for the event series is T' = 8192, with N = 128
events in case of the mean and variance impact models,
and N = 1024 for the tail impact model. For the mean
impact model we choose a default impact length of ¢ = 8
and signal-to-noise ratio r,, = 10. For the variance im-
pact model we fix the delay at ¢ = 1 and set the default
variance increase to r, = 4. For the tail impact model
we also fix the delay at ¢ = 1 and set the default degrees
of freedom to ry = 3. We change the detection difficulty
by varying all parameters from these default values. For
every parameterization, we generate 100 pairs of coupled
event series and time series and 100 uncoupled pairs.

Figure |2 shows the true positive rates of all com-
peting tests. EITEST outperforms or is on par with all
approaches almost across the whole model parameter
space. EITEST-MMD generally outperforms EITEST-
KS, possibly due to a higher statistical power of the
MMD two-sample test compared to the KS two-sample
test for small sample sizes. Despite being nonparametric,
EITEST-MMD is on par with the parametric GC-VAR
test on impacts in mean. TE-KSG, which is also non-
parametric, fails to detect higher order impacts in mean.
As expected, GC-VAR does not detect impacts in vari-
ance or tails, whereas EITEST-MMD and TE-KSG are
sensitive in these two scenarios as well. In the case of
tail impacts, EITEST-MMD outperforms TE-KSG and
GC-VAR by a large margin. TE-KSG appears more
powerful than EITEST-MMD for impacts in tail and
variance when the number of events is small. This ef-
fect may be explained by the short history length [ =1
for TE-KSG (compared to K = 32 for EITEST), which
makes estimation of transfer entropy easier. However, for
N > 64 events, EITEST-MMD reaches and surpasses the
performance of TE-KSG. In summary, EITEST-MMD is
the only approach that reliably detects all three types of
impacts. As a sanity check, we provide the false positive
rates of the tests in the online supplementary material.
We observe that in our simulation study all tests ap-
proximately control the false positive rate at the desired
significance level a = .05. There is a slight tendency of
EITEST-MMD to over-reject (false positive rates above
the controlled level «). Since we do not observe this
behavior in EITEST-KS, we suspect this behavior is
due to the Gamma approximation to the MMD null
distribution.

5.2 Application: Electricity monitoring. We
now use our test for household electricity monitoring
in a smart home environment. Specifically, we analyze
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Figure 2: True positive rates of EITEST, GC-VAR and
TE-KSG for the mean, variance and tail impact models.
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Figure 3: Clothes washer and whole house electricity
consumption with clothes washing events (orange).

the effect of turning on the clothes washer on various
electricity meters in a residential house.

Data. For the experiment, we use the publicly avail-
able Almanac of Minutely Power dataset (AMPds) [20].
The dataset contains two years of minutely electricity,
water and natural gas measurements from a residential
house in Canada. We focus on electricity consumption,
which was recorded using 21 physical meters placed
at various locations in the building to separately mea-
sure the consumption of different household appliances
(clothes washer, clothes dryer, dishwasher, etc.), rooms
(bedroom, home office, garage, etc.), and the whole house
consumption. Each time series contains 1,051,200 mea-
surements. We extract 413 clothes washing events from
the clothes washer electricity (CWE) meter. An excerpt
of the resulting event series is depicted in Figure|3| along
with the clothes washer meter (CWE, left) and the whole
house meter (WHE, right) between April 4th, 2012 and
April 7th, 2012. The different scales of the y-axes indi-
cate the low signal to noise ratio of the clothes washer
impacts within the whole house time series, which makes
the detection problem hard.

Results. In all experiments, we set the maximum
lag to K = 120 minutes (2 hours). The p-values obtained
on all meters are shown in Table [l Results that are
significant at level a = .05 (unadjusted) are shaded.
Since the time series are very long, neither GC-VAR
nor TE-KSG terminated within one hour and had to be
aborted. The MMD-based test rejects on all instances
where the KS-based tests rejects, and some more. This
behavior confirms that EITEST-MMD is more powerful
than EITEST-KS. Despite the low signal to noise ratio,
EITEST-KS and EITEST-MMD correctly identify a
statistically significant association between the clothes
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Table 1: AMPds p-values

meter EITEST-KS EITEST-MMD GC-VAR TE-KSG
WHE < .0001 < .0001
RSE .9999 .9721
GRE .9999 .8754
MHE < .0001 < .0001
B1E .9999 .9819
BME .8629 < .0001
CWE < .0001 < .0001
DWE 9999 .9759
EQE 9999 0119
FRE 9999 9998
HPE 9999 0152
OFE 9999 6240 no results
UTE 9999 0074
WOE 9999 .9340
B2E .0045 < .0001
CDE < .0001 < .0001
DNE 9999 9728
EBE 9999 .0562
FGE .9999 .9313
HTE < .0001 < .0001
OUE < .0001 < .0001
TVE 9999 .3944
UNE .0084 .0004

washer and the whole house meter (WHE). Furthermore,
the tests identify statistically significant associations
in several other meters, e.g., the clothes dryer meter
(CDE). All of these meters can potentially be used to
detect clothes washing events. Since the time series
are univariate, we can visualize the post-event behavior
F1k,o,.__,o for all meters at increasing lags k to get insights
into the nature of these associations and build a suitable
event detection algorithm. Visualizations can be found
in the online supplementary material.

5.3 Application: Earthquakes on Twitter. At
last, we analyze the coupling between earthquakes
and German social media usage. Since social media
reactions often come in bursts of posts, we expect that
events temporarily fatten the tails of the conditional
distributions. We first test whether daily usage of the
keyword “earthquake” in German Twitter is influenced
by the occurrence of severe earthquakes worldwide. We
then focus specifically on earthquakes that hit China,
the country with the largest number of disastrous
earthquakes in the time period we study.

Data. We obtained time series of the daily number
of tweets posted in Germany that contain the keyword
“earthquake”, translated into more than 30 languages,
between 2010 and 2017 (2,557 days), using Crimson
Hexagon’s ForSight platformﬂ For the daily earthquake
event series, we used the publicly available Emergency
Events Database (EM-DAT) provided by the Centre for
Research on the Epidemiology of Disasters (CRED)H and

Shttps://www.crimsonhexagon.com/
Shttp://emdat.be/
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Figure 4: Volume of the keyword “earthquake” in
German Twitter over time, along with two earthquake
event series.

extracted all severe earthquakes in the same time period.
We created two event series: the first containing all
earthquakes globally (162 events), the second containing
only earthquakes in China (40 events). Excerpts from
the two pairs are depicted in Figure [4]

Results. We set the maximum lag to K = 7 days.
According to EITEST-KS and EITEST-MMD, the event
series with all global earthquakes is coupled with German
Twitter activity: for both variants, the null hypothesis
of independence is rejected with p < .0001. This
result matches the intuition that there should be an
association between the series. GC-VAR does not detect
an association (p = .1919). When it comes to the
event series with earthquakes in China, our tests do
not find enough evidence for a statistical association
(EITEST-KS: p = .4090, EITEST-MMD: p = .4225),
which may indicate a lack of awareness of these events
in the German public. However, GC-VAR detects an
association (p = .0090) and thus contradicts its earlier
result. TE-KSG provides inconsistent results on both
tasks: the test delivers largely fluctuating p-values when
run repeatedly. Overall, the results on earthquakes in
China are inconclusive. A visualization of the post-event
behavior of the time series for both event series can be
found in the online supplementary material.

6 Conclusions

Our event information test (EITEST) is designed to
test for shared information between a time series and
an event series in a nonparametric way. The ultimate
goal is to identify time series that can be exploited for
event detection. We reduce the independence testing
problem to a problem of multiple two-sample testing.
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This reduction allows us to apply recent approaches
to nonparametric two-sample testing. In particular,
with EITEST-MMD, associations can be assessed for
time series of arbitrary domains, as long as a suitable
kernel for the MMD statistic is available. Since EITEST
itself has only a single intuitive parameter, it is easy to
apply in practice. Our simulations show that EITEST
outperforms or is on par with methods for causal
inference in detecting relevant statistical associations,
and is the only approach that reliably detects all three
kinds of event impact that we tested for. As it is linear
in the time series length T, it can be applied to very
long input sequences, where existing tests fail to deliver
results within a reasonable amount of time.
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