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Abstract. Detecting temporal abnormal patterns over streaming data
is challenging due to volatile data properties and the lack of real-time
labels. The abnormal patterns are usually hidden in the temporal con-
text, which cannot be detected by evaluating single points. Furthermore,
the normal state evolves over time due to concept drifts. A single model
does not fit all data over time. Autoencoders are recently applied for
unsupervised anomaly detection. However, they are trained on a single
normal state and usually become invalid after distributional drifts in the
data stream. This paper uses an Autoencoder-based approach STAD for
anomaly detection under concept drifts. In particular, we propose a state-
transition-aware model to map different data distributions in each period
of the data stream into states, thereby addressing the model adaptation
problem in an interpretable way. Our experiments evaluate the proposed
method on synthetic and real-world datasets. While delivering compa-
rable anomaly detection performance as the state-of-the-art approaches,
STAD works more efficiently and provides extra interpretability.

Keywords: State transition, Anomaly detection, Concept drift, Au-
toencoder

1 Introduction

Anomaly detection in streaming data is gaining traction in the current big data
research. Despite the high demand in a variety of real-world applications [22]
(e.g., health care, device monitoring, and predictive maintenance), rare existing
models show convincing performance in real-time deployment. The detection of
abnormal patterns in streaming data is challenging. On the one hand, labels are
unavailable or expensive to acquire in real-time, such that supervised approaches
usually fail. On the other hand, the conventional batch models easily expire,
while a single stationary model does not fit the ever-changing data stream.
Recently, Autoencoders have been employed for anomaly detection in an un-
supervised manner [I4J26]. Autoencoders are trained to reconstruct the normal
dataﬂ such that for any unknown data instance, a high reconstruction error in-
dicates an anomaly. Specifically, for time series data, the temporal dependencies

! Unless specifically stated, instead of normally distributed data, normal data refers
to the opposite of abnormal data in the anomaly detection context.
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between data points can be captured by constructing Autoencoders using Recur-
rent Neural Networks (RNNs) and their variants [LI6/I4]. Although such methods
show impressive performance on time series data, they usually ignore the fact
that such data is commonly collected in a streaming way and does not allow full
access during the training phase. Therefore, an adaptive Autoencoder is desired,
which can be initialized with a few normal data and continuously capture the
latest knowledge from the real-time data stream. Another major challenge of
anomaly detection in streaming data is distinguishing between abnormal pat-
terns and concept drifts. Once the data stream drifts to a novel distribution, a
stationary model trained only on outdated data may detect most of the upcom-
ing data undesirably as anomalies.

Given the severe problems, we aim to consider the concept drift detection
and anomaly detection holistically, adapt the model to the latest data distribu-
tion, and detect anomalies only concerning the temporal context where they are
located. Previous concept drift detection researches focus on detecting changes
of the joint probability P(X,y) under a supervised setting, namely, the decision
boundary changes along with the distributional changes in the input data [13].
However, for anomaly detection, the class distribution between normal and ab-
normal is extremely unbalanced, and labels are usually missing or delayed, so
it is impractical to use traditional supervised approaches [I1/], e.g., detecting
drifts based on the changes of real-time prediction error rate. Instead, the adap-
tation based on changes of the prior P(X) will ensure the Autoencoder learns
the normal data pattern from the latest data distribution.

Statistical tests are commonly used for unsupervised drift detection [I3]. For
instance, the two-sample tests examine whether samples from two collections
are generated from the same data distribution. However, many existing methods
conduct tests mostly in the original input space, which only works for linearly
detectable drifts. Ceci et al. [7] introduce both PCA and Autoencoder to embed
features into a latent space for the change detection in power grid data. How-
ever, they use a feed-forward Autoencoder, which does not directly capture the
temporal information in the data.

In this paper, we propose STAD (State-Transition-aware Anomaly Detec-
tion). In STAD, data distribution in a time period is defined as a state. We use
state transitions to model the concept drifts between periods. As Autoencoders
are well-studied for non-linear time series anomaly detection, we are motivated
to extend the state transition paradigm to Autoencoders. We follow the standard
usage of Autoencoders for anomaly detection and novelly couple the detection
of concept drifts and anomalies with the informative latent representation of
Autoencoders. An existing Autoencoder can be reused when a data concept
reappears in the stream. A state transition is triggered by the detection of a
concept drift, and this will further guide the reuse or adaptation of Autoen-
coders for the next period. The states raise interpretability in understanding the
decisions of Autoencoders and changes in the data stream.
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2 Related works

Online anomaly detection. A major category of online anomaly detection
methods is based on a prediction model, which employs historical data to pre-
dict the near future. Abnormal data may not fit the normal prediction and
therefore cause a large prediction error. The widely used ARIMA model in time
series analysis is also used in anomaly detection [3]. However, specific adap-
tation strategies are to be made to use it in online fashion. The Hierarchical
Temporal Memory (HTM) model [I] is designed for real-time application, while
it can automatically adapt to changing statistics. One issue with models in this
category is that they are usually designed for univariate data. Therefore, deep
neural networks are also used recently to model higher dimensional and more
complex data. [I5] use LSTMs as a basic prediction model, which can capture
the high-dimensional contextual information between different timestamps. [12]
also employs an LSTMs-based prediction model for anomaly detection. However,
their semi-supervised approach requires partial labels from the history, which is
not always possible in the streaming processing scenario.

Reconstruction-based approaches train models to reconstruct the normal
data so that unknown abnormal data in the test phase will cause larger re-
construction errors due to the lack of knowledge. Autoencoders are used as an
unsupervised approach for anomaly detection. [26] adopts a Gaussian Mixture
Model to detect anomalies from the reconstruction error. However, they use the
feed-forward network, which cannot deal with inter-dependent data points as in
the data stream. [I4] builds the Autoencoder with LSTM units to capture tem-
poral information. Similarly, [I7] constructs the Autoencoder with Transformers.
These models assume that the sequential data are generated from the same dis-
tribution. Therefore they are vulnerable to drifts. In the worst case, every data
point that arrives after the drifts will be predicted as an anomaly.

Drift detection. Recent drift detection approaches are well-summarized in [13].
Common processing paradigms aggregate the historical data, extract data fea-
tures and conduct statistical tests. Many works contribute to the streaming data
classification problem [4[18], where the real-time classification error is used as
an indicator of drift detection. Unfortunately, the labels are not always immedi-
ately available in real time. On the contrary, unsupervised drift detection meth-
ods detect changes in P(X), namely the distributional changes in the streaming
data. Statistical tests are usually applied to detect drifts in univariate stream-
ing data [20/18]. For multivariate streaming data, each dimension can be tested
individually and aggregated afterward [19].

Finally, the model’s trustworthiness and reliability are important for real-
time anomaly detection, especially in safety-crucial applications. However, the
interpretation of black-box anomaly detection models and complex streaming
data is still under-studied. [22] interprets device anomalies by feature responsi-
bility gained from Integrated Gradient [24]. [2] uses a graph-based framework to
model recurring concepts in the data stream. None of them has a focus on the
drift detection perspective.
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3 Problem definition

3.1 Terminology

Data Stream and concept drift. Let X = {X;}[2. be a D-dimensional
data stream, where X; denotes the observation at timestamp ¢. The data stream
contains unlabeled anomalies as well as distributional changes caused by con-
cept drifts. Instead of explicitly categorizing different concept drift types [13],
we uniformly consider that a concept drift occurs in the data stream between
timestamps ¢ and ¢ + ¢ if the prior probability Pe;(X) # Pst1c(X), where P,
and P~y are respectively the data distribution from the last concept drift to ¢
and from ¢ + ¢ to the next concept drift. The period [t,t + ¢] is the drift period,
defined as the minimum period that covers the whole distributional change. The
data distribution other than drift periods is assumed to be stable. Due to the
lack of labels under the unsupervised setting, we only consider the prior (virtual)
shifts [13] in the data stream.

State transition. Imitating the automata theory, we formulate concept drifts
in streaming data with a state transition model M = (X,S,d) where X is
a multivariate data stream, S = {S7,53,..., Sy} is a set of states (N is the
user-defined maximum number of states that can be maintained), ¢ is a set
of transition functions ¢ : {S; = S;}(S;,S; € S,i # j). For each state S; =
(P, AE;)(i = 1,...,N), AE; is the Autoencoder trained on the current concept
data, P; is the empirically estimated distribution in the Autoencoder latent
space. In this work, we assume sufficient data after the concept drifts is available
to learn P; and AF;.

Considering that no information about the upcoming new concept is acces-
sible, despite a potential high error rate, we still keep using the previous model
for anomaly detection until the model adaptation is finished. Or in other words,
the previous model is used during the upcoming drift period. For distributional
stationary data streams where no concept drift occurs, there will be only a single
state without transition, and the model reduces to a single conventional Autoen-
coder for stationary data.

Anomaly. An observed data snippet X’ = {@41, ..., Te4w }(E, w € N*) is ab-
normal if it significantly deviates from its temporal neighbors (data snippets in
the same state). The significance of the deviation can be determined by thresh-
olding or statistical techniques. Both concept drifts and anomaly snippets are
distributionally deviating from their temporal neighbors. In our study, we dis-
tinguish them in terms of length. After the concept drifts, we assume that the
data distribution stays stationary in the new concept for a significantly longer
period. In contrast, the data stream returns to the previous distribution after a
short anomaly snippet.
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3.2 Problem statement

Given a D-dimensional data stream X = {Xt}geN*v we aim to identify any period
[t+1, t+w] where the corresponding data snippet X} is abnormal. The detection
process should be unsupervised and in real time. We also detect concept drifts
in the data stream and switch to an existing Autoencoder or train a new one on
the newly arrived data.

4 State-transition-aware anomaly detection

In this section, we propose STAD, a state-transition-aware anomaly detection
model, which employs Autoencoder as the base model. The latent representations
of Autoencoders are used to detect concept drifts, which consequently trigger
state transitions. An overview of STAD is shown in
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Fig.1: STAD overview: The left block is a multivariate data stream, where red
dots denote abnormal data points and the dashed box is a data snippet. The
middle block is an conventional autoencoder-based anomaly detection module,
which detects abnormal snippets from the data stream. The right block takes
latent representations from the autoencoder and conducts concept drift detec-
tion, which consequently triggers state transition and model adaptation.

Drift detection

4.1 Reconstruction and latent representation learning

Let fene: RYXP — RH and fpe.: RE — R¥*P be the encoder and decoder of
an Autoencoder. The encoder maps a snippet X’ of the multivariate streaming
data into an H-dimensional latent representation L € R while the decoder
reconstructs the same format snippet X/ from L, where w is the snippet length
and t,w € N*. A common assumption for anomaly detection using Autoen-
coders is that pure normal data are available for the initial model training. The
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Algorithm 1 Latent Space Drift Detection

Input: L5t with maximum size m, Ly wWith maximum size n, minimum Lp;s: size
m* trigger test, current state S = (P, AE), state transition model M = (X, S, 4)

1: while stream does not end do

2 L; + ANOMALYDETECTION(AE, X/T") > Get latent representation
3 Lnew  Lpew U Lt

4: if Loew.S5t2€e > n then > Move the oldest element of L,ew t0 Lhist
5: Li—nt1 = Lnew.pop()

6: Lhist < Lnist ULt—ni1

7 end if

8: if Lnise.size > m then

9: Lhrist-pop()
10: end if
11: if Lpist.size > m™ and Lyew.si2e = n then
12: if KSTEST(L) 1, L0e,) is True then >
13: S + STATETRANSITION(S, Lypew, S, d) > Section
14: Report concept drift, clear Lpist and Liew
15: end if
16: end if

17: end while

reconstruction error e}’ = | X’ — X[ indicates the goodness of fit to the normal
data. In the test phase, abnormal snippets will cause larger reconstruction errors
than normal data such that they are separable. The encoder and decoder can
be implemented with a variety of deep models [26l25]. Considering the temporal
dependencies in streaming data, RNNs and their variants [I6l14] are naturally
suitable for the target. In the following illustration, as an example, we take the
LSTM-Autoencoder [I4], which takes data snippets as input and produces a
single latent representation for each snippet. To map the multivariate recon-
struction error to the likelihood of anomalies, a commonly used approach is to
estimate a multivariate Gaussian distribution from the reconstruction error of
normal data and measure the Mahalanobis distance between the reconstruction
error of an unknown data point to the estimated distribution [T4]. Moreover,
the Gaussian Mixture Model (GMM) [26] and energy-based model [25] can also
be used for likelihood estimation. The thresholding over the estimated anomaly
likelihood in an unsupervised manner is challenging, especially in the real-time
prediction scenario. A possible non-parametric dynamic thresholding technique
is proposed in [12]. The unsupervised approach for the adaptive threshold in
different periods is not the main focus of this paper and will be addressed in our
future work. In the following sections, we focus on adapting Autoencoders based
on the state transitions.

4.2 Drift detection in the latent space

In real-time, the latent representations of the Autoencoder are accumulated for
concept drift detection. Existing concept drift detection approaches mostly work
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in the original space, targeting linear separable concept drifts. Considering the
complex concept drifts in multivariate streaming data, even non-linear distribu-
tional changes can be observed in the Autoencoder latent space. We perform
the non-parametric and distribution-free two-sample Kolmogorov—Smirnov Test
(KS-Test) [89] on each latent space dimension to check whether two latent repre-
sentations are drawn from the same continuous distribution. Algorithm [1| shows
the online concept drift detection process.

Formally, let Lpnist = {Li—m—n+1, Lt—m—nt2, -, Li—n} (M* < 1 < m) be
the accumulated latent representation since the last concept drift and L,c, =
{Li—n+1, Li—n+t2, ..., L} be the latest latent representations. m and n are the
maximum size of Lp;s; and Lyeq, m* is the minimum size of L5 to trigger
a statistical test. Fp;s¢ and Fle, are the empirical estimated cumulative distri-
bution functions from the two latent representation sets. The null hypothesis
(i.e., the observations in Lp;s: and Ly, are from the same distribution) will be
rejected if

$Up| P (L) = Faeu(L)] > cla)y/ % )

m-n

where sup is the supremum function, « is the significance level, c(o) = 1/ —1In(%) - 1.
We maintain both L5 and L, as queues. m is larger than n such that Lp;s
contains longer and more stable historical information, while £,,.,, captures the
latest data characteristic. The drift detector will only start if Lp;s: contains at
least m* samples, such that the procedure starts smoothly.

Since the KS-test is designed for univariate data, we conduct parallel tests in
each latent dimension and report concept drift if the null hypothesis is rejected
on all the dimensions. Once a concept drift is detected, we will conduct the
state transition procedure for model adaptation (Section . The historical
and latest sample sets are emptied, and we further collect samples from the new
data distribution.

4.3 State transition model

Modeling reoccurring data distributions (e.g., seasonal changes), coupling Au-
toencoders with drift detection, and reusing models based on the distributional
features can increase the efficiency of updating a deep model in real time. We
represent every stable data distribution (concept) and the corresponding Au-
toencoder as a state S € S. In STAD, for each period between two concept
drifts in the data stream, the data distribution, as well as the corresponding Au-
toencoder, are represented in a queue S with limited size. The first state Sy € S
represents the beginning period of the data stream before the first concept drift.
After a concept drift, a new Autoencoder will be trained from scratch with the
latest m input data snippets, if no existing element in S fits the current data
distribution; Otherwise, the state will transit to the existing one and reuse the
corresponding Autoencoder. In our study, we assume that sufficient data after
the concept drifts can be accumulated to initialize a new Autoencoder.
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To compare the distributional similarity between the newly arrived latent
representations ) and the distributions of existing states {P;|i = 1,..., N}, we
employ the symmetrized Kullback—Leibler Divergence. The similarity between
@ and an existing state distribution P; is defined as

Q(L)
Pi(L) @

Pi(L)
Dk (P = P;(L)lo

KL( UQ) L;ﬁ z( ) gQ(L)

The next step is to estimate the corresponding probability distributions from the

sequence of latent representations. In [9I§], the probability distribution of cate-

gorical data is estimated by the number of object appearances in each category.

In our case, the target is to estimate the probability distribution of fixed-length

real-valued latent representations. In previous research, one possibility for den-

sity estimation of streaming data is to maintain histograms of the raw data

stream [21]. In STAD, we take advantage of the fix-sized latent representation

of Autoencoders and maintain histograms of each period in the latent space for
the density estimation.

Let £L = {Ly,Lo,...,L:} be a sequence of observed latent representations,

where L; = (hi, ki, ..., h%;) and H is the latent space size, the histogram of £ is

+ Q(L)log

CEEDY (b= 1) 3)

and the density of a given period is estimated by P(k) = ¢g(k). Hence,
can be converted to
Py (k)

Dir(P;,Q) = Z Pi(k:)logQ(k)

k=1..H

For a newly detected concept with distribution @, if there exist a state S;(i €
[1, N]) with corresponding probability distribution P; satisfies D (P;, Q) < e,
where € is a tolerant factor, and S; is not the direct last state, the concept
drift can be treated as a reoccurrence of the existing concept. Therefore the
corresponding Autoencoder can be reused, and the state transfers to the existing
state. If no Autoencoder is reusable, a new one will be trained on the latest
arrived data after concept drift. To prevent an explosion in the number of states,
the state transition model M = (X,S,d) only maintains the N latest states.
Considering that no information about the upcoming new concept is accessible,
despite a potentially high error rate, we still keep using the previous model for
anomaly detection until the model adaptation is finished. Or in other words,
the previous model is used for prediction during the upcoming drift period. The
state transition procedure is described in Algorithm

Q(k)
Pi(k)

+ Q(k)log (4)

5 Experiment

Common time series anomaly detection benchmark datasets are often stationary
without concept drift. Although some claim that their datasets contain distribu-
tional changes, the drift positions are not explicitly labeled and are hard for us
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Algorithm 2 State Transition Procedure

1: function STATETRANSITION(Shist, Lnew, S, 9)
2: Prewy = DENSITYESTIMATION (L pew )

3: if Si:(gzgg”es{DKL(Pnew, P;)} < e then >
4: 0 < U (Shist = Smin)

5: return Smin

6: end if

7 Snew  (Prew, AEnecw) > AFpeqw: Trained on new concept data
8: S+ SUSnew

9: 0 < U (Shist = Snew)
10: if S.size > N then

11: Remove the oldest state and relevant transitions
12: end if
13: return Spew

14: end function

to evaluate. To this end, we introduce multiple synthetic datasets with known
positions of abnormal events and concept drifts. Furthermore, we concatenate
selected real-world datasets to simulate concept drifts. We evaluate the anomaly
detection performance and show the effectiveness of model adaptation based on
the detected drifts.

5.1 Experiment setup

Datasets We first generate multiple synthetic datasets from a sine and a co-
sine wave with anomalies and concept drifts. For initialization, we generate 5000
in purely normal data points with amplitude 1, period 25 for the two wave di-
mensions. For real-time testing, we generate 60000 samples containing 300 point
anomalies. All synthetic datasets contain reoccurring concepts, such that we can
evaluate the state-transition and model reusing of STAD. Following [18], we cre-
ate the drifts in three fashions, abrupt (A4-%), gradual (G-+) and incremental
(I-x). For each type of drift, we create a standard version (x-easy) and a hard
version (x-hard) with more frequent drifts leaving the model less time for reac-
tion. The drifts are created by either swapping the feature dimensions (-Swap-)
or multiplying a factor by the amplitude (-Ampl-). The abrupt drifts are cre-
ated by directly concatenating two concepts. The gradual drifts take place in a
2000 timestamp period with partial instances changing to the new concepts. The
incremental drifts also take 2000 timestamps, while the drift features incremen-
tally change at every timestamp. Anomaly points are introduced by swapping
the values on the two dimensions.

SMD (Server Machine Dataset) [23] is a real-world multivariate dataset con-
taining anomalies. To simulate concept drifts, we manually compose SMD-small
and SMD-large. Both only contain abrupt drifts. SMD-small consists of test
data from machine-1-1 to machine-1-3, which are concatenated in the order
of machine-1-1=-machine-1-2=machine-1-1=-machine-1-3. We take each ma-
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chine as a concept and machine-1-1 appears twice. SMD-large consists of data
from machine-1-1 to machine-1-8 and is composed in the same fashion with
machine-1-1 recurring after each concept. For both datasets, the training set of
machine-1-1 is used for the model initialization.

Forest (Forest CoverType) [5] is another widely used multivariate dataset in
drift detection. To examine the performance in a real-world scenario, we do not
introduce any artificial drift here, but only consider the forest cover type changes
as implicit drifts. As in [I0], we consider the smallest class Cottonwood/Willow
as abnormal.

Evaluation metrics We adopt the AUROC (AUC) score to evaluate the
anomaly detection performance. An anomaly score a € [0,1] is predicted for
each timestamp. The larger a, the more likely it is to be abnormal. The labels
are either 0 (normal) or 1 (anomaly). We evaluate the AUC score over anomaly
scores without applying any threshold [6] so that the performance is not im-
pacted by the quality of the selected threshold technique.

Competitors We compare our model with two commonly used unsupervised
streaming anomaly detectors. The LSTM-AD [I5] is a prediction-based ap-
proach. Using the near history to predict the near future, the model is less
impacted by concept drifts. The prediction deviation to real values of the data
stream indicates the likelihood of being abnormal. The HTM [I] model is able
to detect anomalies from streaming data with concept drifts. Neither LSTM-AD
nor HTM provides an interpretation of the evolving data stream besides anomaly
detection.

Experimental details We construct the Autoencoders with two single-layer
LSTM units. All training processes are configured with a 0.2 dropout rate, le—5
weight decay, le — 4 learning rate, and a batch size of 8. All Autoencoders are
trained for 20 epochs with early stopping. We detect drifts with the KS-Tests
at a significance level of a = 0.05. We restrict that Lp;s has to contain at least
m™* = 50 data point to trigger the KS-Tests. We set the input snippet size as the
sine curve period 25. For the SMD-based datasets, following [23], the snippet size
is set to 100. We process the snippets of the data stream as a sliding window
without overlap. All experiments are conducted on an NVIDIA Quadro RTX
6000 24GB GPU and are averaged over three runs.

5.2 Performance

Overall anomaly detection performance comparison We compare the
AUC score in the streaming data anomaly detection task between STAD and the
competitors. In STAD, we set the latent representation size H = 50, and the sizes
of the two buffers during the online prediction phase as m = 200 and n = 50. The
threshold € is set to 0.0005. We evaluate the performance of STAD in each state
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and report the average AUC. The results are shown in Table[I[} STAD achieves
the best performance on all synthetic datasets with abrupt and gradual drifts.
In the two more complicated real-world datasets, STAD outperforms LSTM-
AD and stays comparable to HTM, while requiring significantly less processing
time (see Section . LSTM-AD shows a dominating performance on the two
incremental datasets. Due to the fact that the value at every single timestamp
changes in I-Ampl-easy and I-Ampl-hard, LSTM-AD benefits from its dynamic
forecasting at every timestamp, while STAD suffers under the delay between
state transitions.

Table 1: Anomaly detection performance (AUC)

STAD (Ours) LSTM-AD HTM
A-Swap-easy 0.986 + 0.005 0.994 £ 0.005 0.535 + 0.008
A-Swap-hard 0.883 £+ 0.016 0.742 + 0.076 0.440 + 0.017
A-Ampl-easy 0.816 + 0.025 0.717 + 0.052 0.500 + 0.006
A-Ampl-hard 0.810 £ 0.012 0.715 £ 0.051 0.499 + 0.006
G-Swap-easy 0.948 + 0.019 0.854 + 0.064 0.506 % 0.008
G-Swap-hard 0.926 + 0.030 0.800 + 0.082 0.502 4+ 0.005
I-Ampl-easy 0.911 £0.014 0.975 £ 0.018 0.488 £ 0.003
I-Ampl-hard 0.970 £ 0.017 1.000 £ 0.000 0.470 + 0.003
SMD-small 0.755 + 0.067 0.562 + 0.001 0.813 + 0.001
SMD-large 0.763 £ 0.016 0.578 + 0.002 0.762 + 0.003
Forest 0.751 +0.022 0.977 £+ 0.001 0.211 4+ 0.001

Parameter sensitivity In this section, we conduct multiple experiments to ex-
amine the impact of several parameters to STAD. We maintain two data buffers
Lhpist and Ly,eq to collect data from the Autoencoder latent space to detect drifts.
We set the upper bound of L;s:’s size m = 200 for all experiments. Depending
on the computational resource, larger m will lead to more stable test results.
Here we examine the effect of the lower bound m*. Similarly, we also experiment
with different sizes n of L,¢,. Additionally, the latent representation size H of
Autoencoders is a parameter depending on the complexity of the input data.

In Figure 2| we check the impact of the three parameters H, n and m* on
abrupt drifting datasets. We try different values on each parameter while keeping
the other two parameters equal to 50. The model is not sensitive to either of the
three parameters on abrupt drifting datasets. Specifically for the two buffers, 20
data windows of both the historical (m*) and the latest (n) latent representations
are sufficient for drift detection. Similar results have been shown on the datasets
with gradual and incremental drifts. The performance is stably better than the
abrupt drifting dataset. One reason is that a longer drifting period leaves the
model more time for detecting the drifts and conducting the state transition. On
the contrary, the model may make mistakes after an abrupt drift until sufficient
data is collected and the state transition is triggered.

The other parameter ¢ controls the sensitivity of re-identifying an existing
state. The larger €, the more likely for the model to transfer to a similar existing
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Fig. 2: Parameter sensitivity: AUC scores under different settings of latent repre-
sentation size H, L,¢,, size n and minimum size m* of Lp;s to trigger KS-Tests.
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state. We set all H, m, and n to 50 and examine € with a value that varies from
0.1 to 1e — 7, and observe the total number of distinct states created during the
online prediction. As shown in Figure with large €’s (0.1 or 0.01), the model
only creates two states and transits only between them once a drift is detected.
On the contrary, too small € will lead to an explosion of state. The model seldom
matches an existing state but creates a new state and trains a new model after
each detected drift. Currently, we determine a proper value of € heuristically
during the online prediction.

Running time analysis Finally, we compare the running time (including train-
ing, prediction, and updating time) of the three models on all datasets in Fig-
ure[d] It turns out that the efficient reusing of existing models especially benefits
large and complex datasets, where the model adaptation is time-consuming.
STAD costs a similar processing time as LSTMAD in synthetic datasets and
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less in real-world datasets. The HTM always takes significantly more processing
time.

6 Conclusion

We proposed the state-transition-aware streaming data anomaly detection ap-
proach STAD. With a reconstruction-based Autoencoder model, STAD detects
abnormal patterns from data streams in an unsupervised manner. Based on the
latent representation, STAD maintains states for concepts and detects drifts
with a state transition model. With this, STAD can identify recurring concepts
and reuse existing Autoencoders efficiently; or train a new Autoencoder when no
existing model fits the new data distribution. Our empirical results have shown
that STAD achieves comparable performance as the state-of-the-art streaming
data anomaly detectors. Beyond that, the states and transitions also shed light
on the complex and evolving data stream for more interpretability.

There are still some challenges in the current model. The current selection
of parameter € is still heuristic-based. We assume sufficient data is available to
train a new Autoencoder if a drift has been detected. And we did not investigate
the variety of drift types, especially gradual drifts with different lengths of drift
periods. We plan to address the challenges above in future work.
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