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Abstract—In recent years, more and more visualization meth-
ods for explanations of artificial intelligence have been proposed
that focus on untangling black box models for single instances
of the data set. While the focus often lies on supervised learning
algorithms, the study of uncertainty estimations in the unsuper-
vised domain for high-dimensional data sets in the explainability
domain has been neglected so far. As a result, existing visual-
ization methods struggle to visualize global uncertainty patterns
over whole datasets.

We propose Unsupervised DeepView, the first global uncer-
tainty visualization method for high dimensional data based on a
novel unsupervised proxy for local uncertainties. In this paper, we
exploit the mathematical notion of local intrinsic dimensionality
as a measure of local data complexity. As a label-agnostic measure
of model uncertainty in unsupervised machine learning, it shows
two highly desirable features: It can be used for global structure
visualization as well as for the detection of local adversarials.
In our empirical evaluation, we demonstrate its ability both in
visualizations and quantitative analysis for unsupervised models
on multiple datasets.

Index Terms—Visualization; Unsupervised Learning; Uncer-
tainty Quantification; Adversarials

I. INTRODUCTION

Visualization of raw data, pre-trained models, and uncer-
tainties of these models are essential methods for explaining
machine learning models. While in the area of supervised
models, such visualizations of a classification model and its
uncertainties are widely studied [14], [16], [23], this has
only been tackled less extensively for unsupervised learning
methods [21]. However, it has been neglected entirely for the
combination of unsupervised models such as clustering [1]
or anomaly detection [2] and global explainability. This is
due to the fact that unsupervised models do not have labeled
training data that allow us to directly evaluate misclassifica-
tions or model errors. Similarly, uncertainties are challenging
to quantify for a model without known (labeled) patterns.
Furthermore, it is easier to depict uncertainties for specific
data points rather than reliably approximate uncertainties for
the entire model.

Existing visualization methods for high dimensional data
[4], [13], [34] rely on labeled data and are not able to
visualize the hidden (unknown) patterns of data in case of
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Fig. 1. This Figure shows the difference between uncertainties for supervised
models versus uncertainties in the unsupervised domain. Data areas along the
classification boundary are most likely misclassified in the supervised domain.
In the unsupervised domain, the uncertainty is not as clear. Here, we define
our uncertainties by measuring the local intrinsic dimensionality of the data.
When this dimensionality varies considerably from its neighbors, we define
this as an uncertain area for our visualization scheme.

unsupervised learning. The key challenge is the lack of an
objective function that, in the case of supervised learning,
describes the separability of one or multiple classes, as de-
picted in Figure 1 on the left. In contrast to this, unsupervised
measures such as cluster-validation [5], clusterability scores
[7], or anomaly scores [8] are designed either to evaluate the
quality of clustering (globally for the entire dataset) or the
detection of rare and exceptional outliers (locally for individual
objects). In contrast to unsupervised measures, we aim at
both a global visualization of raw data structures and a local
uncertainty of specific data areas. Neither the one nor the other
should rely on labels but are purely based on the given pre-
trained unsupervised model and a proxy for local uncertainty
quantification.

Our research focuses on unsupervised knowledge discovery
and defines novel proxies for uncertainties. In this paper, we
exploit the mathematical notion of local intrinsic dimension-
ality as a proxy for the complexity of the data distribution. As
depicted in Figure 1 on the right, we define local divergence in
intrinsic dimensionality as the label-agnostic measure of high
model uncertainty in unsupervised machine learning. It allows
for both local assessments of uncertainty for a specific data



area and, at the same time, for global visualization of data
structures vs. adversarial examples in less certain data areas.
We have implemented the first unsupervised DeepView ap-
proach that visualizes data structures and adversarials without
any prior labels. It requires only a pre-trained unsupervised
model and its uncertainties. This framework calculates the
local intrinsic dimensionality of the data points and creates a
mapping of uncertainties using dimensionality reduction [15]
on the combination of the data, their prediction uncertainties,
and their dimensionality. We then use outlier detection algo-
rithms on this data embedding to depict our uncertainties with
a high empirical precision score. Our paper solves the task
of global and local uncertainty visualization for unsupervised
learning. In contrast, all other known methods either solve
global supervised explainability [13], [23], [24] or focus on
local explanations [16], [20], [25] with few unsupervised
methods [21] only.

II. RELATED WORK

Visualization and Explanation of Machine Learning. In
the past, we have seen several distinguished visualization tech-
niques that explain the quality of a model, such as LIME [16],
SHAPex [20], Anchor [25], and LIME-based extensions such
as EXPLAIN-IT [21] for unsupervised learning. In addition,
other explainability methods such as LEMNA [22] extend
explainability to Recurrent Neural Networks or Multilayer
Perceptrons that are specifically needed for security-critical
contexts. Furthermore, countless other approaches, such as
causal explanations for supervised learning algorithms, exist
[9]. All of these methods focus on single decisions or local
explanations while neglecting the global properties of the
underlying machine learning model.

DeepView [13] was the first attempt to visualize global
decision boundaries of a deep neural network, in contrast
to previous methods that explain single examples or their
classification features. Other methods produce a projection
of the data and generate global explainability; however, they
either do not depict decision boundaries [23] or are not
applicable to deep neural networks [24] due to their density
estimation approach in the input space. Furthermore, these
methods cannot detect uncertainties by themselves as they rely
on a human evaluation of the algorithm. In contrast, we aim
at a completely unsupervised approach that lets the algorithm
itself highlight where the uncertain regions are. We enable
an intuitive uncertainty estimation using the certainty of the
unreliability in our process rather than the certainty of the
class label, which is used by supervised approaches, as the
background color to depict the robustness of the model in the
form of adversarial examples.
Subspace cluster visualization This visualization method
essentially distributes the data into two classes, clustering
uncertain and certain data points in high dimensional space.
Prominent cluster visualization methods include Clustnail [36],
the Heidi matrix [37] and Ferdosi’s astronomical data subspace
clustering algorithm [38]. The prominent difference in contri-
bution between these clustering techniques and our method-

ology is that we enable the visualization of uncertainties
independent of the clustering algorithm used for the method.
Furthermore, methods like Ferdosi’s subspace clustering pro-
vide no direct way of comparing subspaces, whereas UMAP
[15], which we use for dimensionality reduction purposes,
promises preservations of local and global distances. Instead
of employing UMAP [15], any of these clustering techniques
could be included in the visualization tool. However, for
example, the Heidi matrix’s [37] abstract visual mapping
would lead to a loss of interpretability of the image produced.
VISA [39] provides both a global overview as well as an
in-depth-view, but the distance between the clusters might
be obscured by the radius of the circles in the visualization
scheme, causing the visualization to potentially look cluttered.
However, the less complex 2d representation chosen in this
paper leads to a more understandable and intuitive graphic,
which allows even a less technical audience to understand
whether a model is considered less or more uncertain by the
visualization tool.

Uncertainty Quantification for Machine Learning. Un-
certainty estimates include LUX [26], which is based on
decision trees for their local estimates and CLUE [14] and
its extensions [27] [28]. LUX [26] assumes the supervised
knowledge of the class labels for useful interpretation of their
generated estimates. It focuses on local explanations of the
model only, while CLUE [14] looks at the smallest change to
the input in the latent space to change the model’s certainty.
Therefore it focuses on local rather than global explanations.
There have also been attempts to model uncertainty for exist-
ing explainability methods, such as variations of LIME [21]
or SHAP [29]. However, in contrast to our work, they are
only limited to local explanations and uncertainties. We shift
our research focus to global explanation methods that allow
a user to choose the globally more reliable model rather than
only understand the inner black box of the model using single
explanation examples.

Dimensionality Reduction for Machine Learning. As
most of the previously mentioned methods work on high
dimensional data, we observe dimensionality reduction as an
essential related technology. Principal Component Analysis
(PCA) [10] and Linear Discriminant Analysis (LDA) [4]
are state-of-the-art methods for unsupervised and supervised
dimensionality reduction. While t-Distributed Stochastic
Neighbor Embedding (t-SNE) [34] and UMAP [15] calculate
similarity scores between pairs of data instances in a high
dimensional space and try to find an optimal mapping in a
lower-dimensional space that sufficiently represents the data
points. Although heavily used for raw data visualization, none
of these methods can optimize for uncertainties in pre-trained
models. As pre-processing steps, they neglect the later model,
while in our case, we want to optimize for both. We include
local properties of the raw data and an unsupervised model’s
uncertainty in our visualization optimization.



III. VISUALIZING THE UNCERTAINTIES OF AN
UNSUPERVISED LEARNER

In this work, we consider uncertainties w.r.t. (A) properties
of the raw data distribution as well as (B) properties of
unsupervised machine learning models that have been pre-
trained on these data. We define uncertainties as more general
than misclassification of supervised models. In our definition,
uncertainties are caused by the complexity of data, e.g.,
uncertain areas following the empty space phenomenon in high
dimensional data [12]. Similarly, based on a pre-trained model,
uncertainties may be areas of high probability for adversarial
examples. However, in our definition, the adversarial examples
are not depicted by wrong class labels. We observe unsu-
pervised adversarial examples in the training of unsupervised
models (e.g., adversarial examples in autoencoders [3]).

Hence our methods tackle two main challenges:
First, our unsupervised approach’s labels and amount of
classes are unknown. We cannot assess the traditional
discrepancies between what a model predicts as uncertain and
what really is uncertain or incorrect. Without supervision, we
are forced to depict uncertainties using novel unsupervised
measures and propose a local comparison of this measure
with the object’s local neighborhood.
Second, existing supervised methods such as DeepView [13]
rely on prediction probabilities for the classes, which are
then used to visualize the uncertainty of the class prediction.
In our case, we assume the knowledge of those prediction
uncertainties for our model and use them as input into the
visualization method. Formally, we describe our abstract
notion of unsupervised uncertainties as follows:

Definition 1
(UNSUPERVISED QUANTIFIABLE UNCERTAINTY)

UQU(xi) = padv(xi) + pmodel(xi)

with padv(xi) the likelihood of sample xi being an adversarial
and pmodel(xi) the likelihood of sample xi being out-of-
distribution for the particular model, suggesting a misclassifi-
cation.

A key contribution of our work is that we approximate
padv(xi) by our outlier detection algorithm and its local
intrinsic dimensionality measure plid(xi). The proxy plid(xi)
describes the likelihood of the data point being an adver-
sarial because of its Local Intrinsic Dimensionality (LID).
In a supervised setting, we would describe padv(xi) =
pmissclass(xi|high certainty(xi)). An adversarial example is
commonly described in literature as an optimization problem
for a classifier f : Rm → {1...k}, which maps image pixels
to a discrete label set [35]. f has a continuous loss function
denoted by lossf : Rm × {1...k} → R+. An adversarial
example solves the following optimization problem for an

input x ∈ Rm and label l ∈ {1...k}:

Minimize ||r||2 subject to
1. f(x+ r) = l

2. x+ r ∈ [0, 1]m

So intuitively, the most common definition of an adversarial
example is the smallest perturbation to an image that leads to
a misclassification of a classifier. In practice, it is very hard
to determine whether an image is simply a slight perturbation
from another image of a dataset, especially if we generate an
adversarial image from an image that is not part of the training
dataset. Mostly, adversarial examples differ from normal mis-
classifications due to their high certainty in the correctness of
the prediction, which is why we use this property to determine
padv(xi). In practice, this means we fail to distinguish between
simple misclassifications that happen to have high certainty
and real adversarials in the form of input perturbation attacks,
but since we aim to approximate the uncertainty of a model
as an end goal, this explicit distinction is not necessary. Both
are very dangerous for real-world applications and capture the
essence of an uncertainty, especially for high-risk scenarios
such as autonomous driving.

On the other hand, pmodel(xi) is approximated by the
certainty of the model itself on the given data points. For
our empirical evaluation, we simply compare whether our
unsupervised approximation derived from our model is in line
with the supervised misclassification (using labels). In real-
world use cases, this would not be possible; however, our
datasets have given labels that are ignored by our algorithm
but useful for external evaluation.

A. Unsupervised DeepView
We propose a generalized visualization technique to depict

uncertainties and potential adversarial examples in unsuper-
vised learning. Our framework consists of three components:

1) Local Intrinsic Dimensionality (cf. Section III-C) as our
main uncertainty proxy of the data distribution.

2) Dimensionality Reduction (cf. Section III-D) that allows
for 2D visualization of high dimensional data.

3) Adversarial Detection (cf. Section III-E) based on an
outlier analysis of our uncertainty measure.

In the unsupervised framework, all three of these com-
ponents can be exchanged in future work. In the following
subsections, we present our first instantiation of each of these
into the DeepView visualization [13]. This allows for the
first time a fully unsupervised analysis and visualization of
uncertainties.

Please note that our method is not just showing the quality
of the decision boundary in a supervised learner. We extract
and measure uncertainties based on unlabeled data. To the best
of our knowledge, this is the first uncertainty visualization
method that focuses on global interpretability rather than
explanations of individual predictions in the unsupervised
learning domain that can visualize a smooth two-dimensional
manifold of the uncertainties on high-dimensional data such
as natural images.



B. Algorithm Overview

Our estimation and visualization algorithm needs to be
applicable for any unsupervised task or usable whenever
the probabilities of an unsupervised model are given on a
randomly sampled data set. As a result of our algorithm, we
want to depict uncertain areas with unsupervised adversarial
examples and a visualization of certain areas and local uncer-
tainty. To achieve this, we propose the following algorithmic
steps:

1) Calculate the local intrinsic dimensionality (LID, cf.
Section III-C) of each data point ∀xi ∈ S in the sample
S compute LID(xi).

2) Apply dimensionality reduction (UMAP, cf. Sec-
tion III-D) on the given input of LIDs together with
unsupervised model uncertainty. We project these three
values appended together as xi to two dimensions, yield-
ing yi = π(xi).

3) Create a tight grid of samples ri in two-dimensional space
and map this to high-dimensional space.

4) Outlier detection (cf. Section III-E) algorithm on the
uncertainty measures, resulting in binary detection of
uncertain and certain areas. We define the uncertain area
by a high LID mean.

5) Visualize the outlier scores and interpret them as unsu-
pervised uncertainties.

In contrast to our unsupervised algorithm, the supervised
DeepView method [13] is composed of four algorithmic steps
which enable visualization of decision boundaries:

1) Application of the dimensionality reduction technique
Fisher UMAP [15] to project data points xi to two
dimensions, yielding yi = π(xi).

2) Creation of a tight grid of samples ri in two-dimensional
space and mapping to high-dimensional space.

3) Application of the network to this mapping to obtain
predictions and certainties.

4) Visualization of the labels together with the entropies of
the certainties.

Ma et al. [18] already showed that local intrinsic dimension-
ality measures help characterize adversarial subspaces. While
there has also been research on the limitations of these features
for the characterization of adversarial examples [30], one of
the main critique points was the non-transferability of the LID
features to other deep neural networks. This point does not
affect the quality of our visualization method, considering it
is used on a specific model and does not require transferability
to other models. The second criticism expressed in this paper
was that the quality of LIDs as features for adversarial attacks
with the trained detector algorithm suggested by Ma et al. [18]
varies with the confidence parameter, and training of ensem-
bles of adversarials with different confidence levels did not
help the detection performance. However, our approach does
not solely rely on LIDs. Instead, it uses the dimensionality
reduction technique based on UMAP [15] suggested by the
DeepView algorithm [13] and searches for outliers on this
mapping of the data points LIDs and prediction certainties.

Note that the exact outlier detection algorithm is exchangeable
in the framework for any method that performs best for your
dataset. This means that we take into account the uncertainties
as well as the LIDs, giving us a better chance of extracting
adversarial or uncertain regions. After all, we do not wish just
to identify adversarial examples. Furthermore, there is now no
other implementation of a global visualization of the decision
boundary of uncertainty in the unsupervised domain. We later
show that our approach gives us good approximations of the
uncertainties within an unsupervised learner.

C. Local Intrinsic Dimensionality

The intuition behind this metric is to measure the increase
of data objects encountered, estimating the dimensionality of
the structure of the data. Transferring the idea of expansion of
dimensions to distance distributions gives a formal definition
of LID [19].

Definition 2 (LOCAL INTRINSIC DIMENSIONALITY)
Given a data sample x ∈ X , let R > 0 be a random variable
denoting the distance from x to other data samples. If the
cumulative distribution function F (r) of R is positive and
continuously differentiable at distance r > 0, the LID of x at
distance r is given by:

LIDF (r) =̂ lim
ϵ→0

ln(F ((1 + ϵ) ∗ r)/F (r))

ln(1 + ϵ)
(1)

whenever the limit exists. The maximum likelihood estimator
(MLE) of the LID at x given a reference sample drawn from
the representation of the data distribution P is defined as
follows:

ˆLID(x) = −

(
1

k

k∑
i=1

log
ri(x)

rk(x)

)−1

(2)

Where ri(x) denotes the distance between x and its i−th
nearest neighbor within a sample of points drawn from P , and
rk(x) is the maximum of the neighbor distances. While this
computation can become computationally expensive with the
increase of the neighborhood, Ma et al. [19] showed that dis-
crimination of adversarial and non-adversarial examples turn
out to be possible for minibatch sizes of 100 and neighborhood
sizes as small as 20, rendering our computational estimation
feasible. Therefore, these are the parameters we also use to
implement our visualization scheme.

D. Dimensionality Reduction

The goal of dimensionality reduction techniques for visu-
alizations is to find mappings π : (S, ds) → R, d = 2, 3,
where (S, ds) is a metric space and π ideally preserves the
information encoded in a set of data points x1, ..., xn ∈ S.
The paper is based on a dimension reduction technique called
UMAP [15], which performs at least equally well as the
state-of-the-art non-linear dimensionality reduction method t-
Distributed Stochastic Neighbor Embedding (t-SNE) [34], but
allows for the inverse projection suggested by the original
DeepView implementation. It allows for our two-dimensional



visualization. Theoretically, this method could be exchange-
able as long as inverse mappings can still be established with
other algorithms.

E. Adversarial detection

Please note that we can not simply detect unsupervised ad-
versarial examples by applying clustering algorithms because
of the imbalance in the data sets. For a good model, we do not
find near as many uncertainties as certain data points. After
all, we actually look for outliers whose LIDs and prediction
scores do not match the distribution of the other data points.

As Ma et al. state in their paper [19], adversarial examples
have noticeably higher LID characteristics than normal exam-
ples. This means that we can distinguish adversarials using
outlier detection algorithms. We follow the intuitive definition
of an outlier as given by Hawkins [31] and search for outliers
that deviate so much from the other observations as to arouse
suspicion that they are generated by a different mechanism.

We detect outliers based on density-based clustering al-
gorithms that allow us to distinguish certain and uncertain
areas but also consider that adversarials or uncertainties have
to be detected for both single-point outliers and cluster-
based outliers. We refer to the definition of cluster-based
outliers of LDBSCAN [32] and its extension HDBSCAN [33].
Compared to other clustering-based outlier detection methods,
the advantage of these two algorithms is the quantifiable
outlier score, which intuitively corresponds to the degree of
the outlying object. In the case of HDBSCAN, it is referred
to as an outlier score. These scores can be incorporated into
our visualization of the decision boundary as the certainty of
the outlier. The difference between HDBSCAN and DBSCAN
is that HDBSCAN performs a hyperparameter search of the ϵ
parameter, namely the radius from at least one cluster point to
another, of LDBSCAN without having to preset it, therefore
only needing a minimum cluster size as an input parameter.
This is why our final implementation uses the HDBSCAN
algorithm without comparing the results from LDBSCAN.

F. Runtime Analysis

The runtime of our algorithm, including the three mentioned
steps, is similar to the supervised DeepView implementation.
However, the extra effort in calculating the LIDs once for
all samples in the dataset, approximating it with a neigh-
borhood size of 20 each, and then computing dimensionality
reduction and adversarial examples is neglectable compared to
the heavy optimization of supervised DeepView. Preliminary
experiments have shown very similar runtimes and neglectable
differences. Hence, we focus the following on qualitative and
quantitative evaluation without deepening the topic of runtime
evaluation.

IV. EXPERIMENTS

In this section, we apply the new Unsupervised DeepView
implementation1 and evaluate how well we capture uncer-

1The code for the project can be found at our chair’s collective repository
https://github.com/KDD-OpenSource/Unsupervised-Deepview/.

tainties. We measured uncertainties as either supervised mis-
classifications or adversarial examples and showed exemplary
applications of our method to CIFAR-10 and Fashion-MNIST.
We ensure not to test on both models used for evaluating
DeepView. Still, the model trained on the Fashion-MNIST
dataset is a separately trained network relying on the resnet50
convolutional architecture with some additional convolutions
and a linear layer. As you can see later in Table I, our algorithm
also performs excellently for this model and dataset with very
high precision scores over several runs.

Fig. 2. The original DeepView implementation achieves a two-dimensional
visualization of the decision boundary of a supervised classifier. For evaluation
purposes, we embedded our as uncertainties recognized points that we
calculated without using the known labels into the original DeepView im-
plementation. The blue circles denote points that we recognized as uncertain.
As we can see, we were perfectly able to distinguish an adversarial example
labeled as a bird, even though it was actually a frog (green isolated dot near
the pink cluster), also visualized in Figure 3 from the CIFAR-10 data set. In
the same picture, we also see the edges of the truck cluster marked, where
a misclassified car and plane are nearly hidden (bright blue cluster with dark
blue and orange spots). The other point marked as uncertain is a correctly
labeled plane with low uncertainty values.

bird <   > frog

Fig. 3. When clicking on the point instance given as uncertain, the original
instance of the image will be shown. On the left-hand side, the model predicted
label is shown, and on the right, the actual label is given. For the Unsupervised
algorithm, we will only output certain or uncertain labels, for instance. The
goal is to allow the user to directly assess the instances visually so as to better
understand why the model classified them as uncertain.

To evaluate our visualization scheme, we look at the follow-
ing questions: (i) Does our combination of outlier detection
algorithms, LID features, and prediction probabilities capture
the same or similar uncertainties to the supervised version
of the DeepView implementation without using labels? (ii)



Are the LID features necessary for our implementation to
perform well, or could we also just detect outliers using the
uncertainties of the prediction alone? (iii) How well are we
able to distinguish model uncertainty or adversarials without
the knowledge of the label?
Addressing our first question, we compare the original Deep-
View visualization technique with labels to our unsupervised
DeepView method by marking the points recognized as uncer-
tain in the original DeepView plot in Figure 2. Here, we can
see that while not all uncertainties were detected, the points
marked as uncertain turned out to be either misclassifications,
adversarials, or one point with just low model certainty. We
were able to quantify misclassifications because we did not
use the labels to generate our uncertainty predictions. Still,
we knew the actual labels of the dataset because we evaluated
over a labeled data set to test the quality of our model. A
zoomed view of the uncertainty found, and its original image
point can be found in Figure 3. It is visualized when clicking
on the data point in the plot given.

Fig. 4. For evaluation purposes, we also tested whether the LID features
were essential for visualization of uncertainty without knowledge of the
labels. Here, we just marked the points detected by the HDBSCAN [33]
algorithm without the LID features and without knowledge of the labels in
the picture generated by the original DeepView algorithm. As we can see, the
uncertainties are not captured as well. Often the centers of the class clusters
are marked whether they are uncertain or not.

Furthermore, we compare the points detected as outliers
using only the data points and prediction uncertainties, without
the LIDs as features in Figure 4. This gives us an intuition
that the LIDs work as features to compensate for the actual
class labels and shows that we can correctly identify actual
adversarial examples within the dataset.
Addressing (iii), our precision score is consistently high. While
the method does not detect all uncertainties, the uncertainties
we do detect are either misclassifications or adversarial exam-

ples with the following percentages (cf. Table I).

TABLE I
PRECISION SCORES OVER 10 RUNS

Dataset Precision
CIFAR-10 0.984
Fashion-MNIST 0.973

The final output of our visualization method can be found
in Figure 5. Here, we can see data points denoted as certain
and uncertain, as well as our decision boundary colored in by
the strength of the blue note. Darker background areas indicate
more certain areas in the data for the specific model.

Fig. 5. Our Unsupervised DeepView implementation achieves a two-
dimensional visualization of the decision boundary of uncertainties. We do
not claim that it identifies all model uncertainties. Still, those it detects are
either uncertain in their prediction, misclassifications, or adversarials which we
can evaluate with a very high precision score. Furthermore, our visualization
method does not aim to identify them directly but rather outputs the areas
in which predictions become uncertain or where the classifier performs
well. Dark areas denote particularly certain areas, whereas whiter areas are
particularly uncertain. Our uncertain data points are colored light blue

V. CONCLUSION AND FUTURE WORK

In this paper, we propose Unsupervised DeepView, which
allows the depiction of a smooth dimensional manifold of
uncertainties for high-dimensional data. To the best of our
knowledge, it is the first method generally applicable to all
unsupervised learning algorithms that provide uncertainties in
the unsupervised domain. In contrast to recent methods such
as GLAM-CLUE [11] our method does not generate counter-
factuals but shows the decision boundary of the uncertainties
of the model. We do not require any labeled data as we exploit
the mathematical concept of local intrinsic dimensionality as
a local proxy. Our global visualization of data structures vs.
adversarial examples provides first unsupervised insights into



the uncertainty and vulnerability of machine learning models.
It portrays the whole decision boundary rather than the single
decisions of the model.

In our empirical evaluation, we present precision for
CIFAR-10 and Fashion-MNIST. We evaluate it using the
pre-trained residual network with 20 layers discussed in the
original paper to show that the algorithms predict similar
uncertainties despite the lack of labels. Secondly, we use a
different convolutional neural network pre-trained on Fashion-
MNIST to confirm our results.

As a first approach in this area, we see future work to
extend our method to data beyond high-dimensional vector
spaces. For example, graph data that has inherent local and
global structures would benefit from our methodology but
requires specific graph measures as local proxies of structure
and uncertainty. Furthermore, we see improvement potential
for the usability of the tool or practicability of trust calibration
- Overall, this explainability method is designed not just
for a technical audience but should be used to provide a
better estimate than just accuracy estimates or other common
proxies for the reliability of a model on a specific data set.
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